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Abstract 

Aircraft laser beamsteering is accomplished using a single gimbaled mirror housed inside 

a turret, which protrudes from the fuselage and causes unwanted turbulence, vibrations, 

and weight. The U.S. Air Force is currently investigating using microelectromechanical 

systems (MEMS) micro-mirror arrays to replace older aircraft beamsteering technologies. 

MEMS micro-mirror arrays provide a unique solution to address this unique application. 

Unfortunately, current MEMS micro-mirror technology cannot meet all beamsteering 

requirements in a single assembly. These requirements include high fill-factor, large 

aperture, 25 degrees of out-of-plane deflection, 4-axis tilt, and actuation speeds below 1 

millisecond (ms). In this research, a novel MEMS actuation scheme to address all these 

requirements using electrostatically driven bimorph cantilever beams was designed, 

fabricated, and tested. Modeling results show a linear relationship between the number of 

cantilever beams and maximum micro-mirror deflection. Characterization of fabricated 

micro-mirror assemblies supports the modeling for individual actuators, as well as, for 

micro-mirror platform assemblies. Fabricated devices reached vertical deflections greater 

than 170 µm with pull-in voltages of approximately 20 V and an optical range of 16 

degrees, within the 1 mm x 1 mm spaces covered by the mirror/pillar assembly. The large 

deflections, low pull-in voltages, and reasonable optical range shown in this research 

demonstrate the feasibility of using MEMS micro-mirror arrays to address the aircraft 

beamsteering application. 
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ELECTROSTATICALLY DRIVEN LARGE APERTURE MICRO-MIRROR 
ACTUATOR ASSEMBLIES FOR HIGH FILL-FACTOR, AGILE OPTICAL 

PHASE ARRAYS 
 

1. INTRODUCTION 

1.1 Background  

The microelectromechanical systems (MEMS) field is a rapidly advancing 

technological discipline, and the last several decades MEMS devices have been 

incorporated into a large number of technological applications. Used as accelerometers, 

gyroscopes, inertial sensors, resonators, and micro-mirrors, they can be found in nearly 

everything – from cellular phones to the most advanced weapon systems [1]. Simply 

defined, MEMS refers to miniaturized mechanical and electromechanical 

devices/structures, which are constructed using microfabrication methods. MEMS 

structures are those devices with minimum feature sizes from several millimeters (mm) to 

well below a micron (µm) [2].  They can vary from simple structures without moving 

parts, to complex structures with multiple moving components which are part of and 

controlled by other microelectrical components. 

1.2 Motivation 

Currently the U.S. Air Force is in need of agile, efficient, high power, and high 

accuracy beamsteering systems for integration into systems such as infrared 

countermeasures, laser communications, laser weapons, laser sensing for multi-target 

search and track capabilities. Presently, beamsteering is accomplished by a single 

gimbaled mirror housed inside a turret. This assembly protrudes from the aircraft and 
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creates drag and atmospheric turbulence. This, in turn, induces problems into other 

systems such as active optical steering and imaging systems, not to mention reducing the 

performance capabilities of the aircraft. In the ever-evolving national defense 

technological arena which is driven by the growing need for more advanced capabilities, 

systems which hinder the operational capacities of another system need to be replaced.  

1.3 Problem Statement  

The operational characteristics of current beamsteering systems do not allow them 

to be operated internally, as that would limit the system’s field of view to a point as to 

make it operationally obsolete. Because of this, there is an immediate need to develop a 

new system to meet the operational needs of current and future aircraft capability 

requirements. One possible solution to this problem is the use of optical MEMS micro-

mirror arrays. 

1.4 Justification 

The goal of this research is to design, model, fabricate, and test/characterize  a 

high fill-factor, large aperture, out-of-plane, micro-mirror actuation assembly capable of  

reaching deflection angles of 25º with 4-axis of tilt, eventual project goal of 45º, and 

actuation speeds < 1 ms. This actuation assembly will be combined with a separate 

micro-mirror assembly, developed by researchers from the Air Force Research 

Laboratory (AFRL), consisting of a 1 mm x 1 mm mirror atop a 400 µm pillar; together 

these structures will enable the development of broadband micro-mirror arrays capable of 

steering large aperture laser beams across a large field of view. Ultimately, knowledge 

gained from this research will eliminate the need for protruding turrets housing 
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mechanical gimbals, thus increasing the efficiency of the optical systems as well as all 

the systems affected by aircraft turbulence.  

1.5 Methodology 

In this research, a novel electrostatic “zipper” actuation scheme was developed for 

the fast actuation of large aperture, large angle laser beam steering micro-mirror platform 

assemblies. The challenge when attempting to achieve the required deflection angles in 

micro-mirror actuator assemblies is due to the limited clearance, which is governed by 

the thickness of the sacrificial layers used during the device fabrication process. As 

commercially available MEMS prototyping services limit the sacrificial layers to several 

microns the first challenge is raising the micro-mirror assembly high enough to allow for 

the large initial deflections, in excess of 100 µm, necessary to reach the desired operation 

angles. This design addresses this problem by lifting the micro-mirror platform to an 

initial starting position using a series of partial-bimorph cantilever beams.  

Extreme deflections have been reached using electrostatic and electrothermal 

actuation of high stress bimorph beams but current electrostatic designs [3, 4, 5] either 

have very small deflection angles or extremely long cantilever beams, which require 

large voltages to achieve pull-in. Electrothermal designs, however,  have been shown to 

reach extreme deflection angles, using much shorter bimorph cantilever beams but result 

in much slower switching speeds [6, 7]. This “zipper” approach utilizes aspects observed 

in electrothermal designs, which reach the initial deflections required, incorporated into 

an electrostatic actuation scheme. 
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In an effort to achieve extreme deflection angles this “zipper” actuator design 

stacks bimorph cantilever beams in such a way as to allow for the deflection of each 

beam to be added to the previous beams. This approach has two benefits. First, beams can 

continue to be added to the actuator to achieve higher initial deflections, as long as the 

space available for the device is not exceeded. Second, this approach requires a much 

lower pull-in voltage than traditional electrostatic designs with comparable platform 

deflections. This is because the pull-in of one beam will reduce the height of subsequent 

beams making it much easier to actuate the entire assembly. 

1.6 Summary 

This chapter provides a brief background on MEMS technology as a basis of 

understanding the scale of the micro-mirror platform assemblies designed in this 

research. Following that, a discussion on the motivation driving the methodology and 

associated problems and then the justification for this approach was described. 

Subsequent chapters detail the theory and fabrication of the MEMS devices, the 

methodology for the design and characterization, results from the characterization of 

fabricated devices, analysis of the collected data, and recommendations for future work. 
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2. LITERATURE REVIEW 

2.1 Chapter Overview 

This chapter is a background and literature review of electrostatically driven, 

large aperture micro-mirror actuator assemblies for high fill-factor, agile optic phased 

arrays, and topics related to the design and fabrication of such devices. Although these 

topics in no way encompass all the detail needed to fully understand the complex aspects 

of MEMS design, fabrication, and applications they focus on those which are critical to 

this research. This chapter is divided into sections: MEMS Fabrication, MEMS 

Transducers, and MEMS Micro-mirror Actuation Schemes.  

The MEMS Fabrication subsection introduces the processes involved and 

techniques used during the fabrication of MEMS devices and outsourced fabrication 

options. Specifically, it covers the Photolithography and Pattern Transfer processes, as 

well as the three main techniques which can be used, Microforming, Bulk 

Micromachining, and Surface Micromachining, and concludes with a review of two 

Commercial Foundry Fabrication Options. The MEMS Transducers subsection provides 

a brief introduction to MEMS Sensors and Actuators. It highlights their basic operations 

and uses, providing a simple example for each.  The chapter is concluded with a brief 

review of the different MEMS Micro-mirror Actuation Schemes, including Electrothemal 

Actuation, Electrostatic Actuation, and Piezoelectric Actuation techniques currently 

being researched.  

The complex, multi-disciplinary nature of the electrical and mechanical 

components of MEMS structures, which must take into consideration physics, chemistry, 

electrical, and mechanical effects simultaneously [8, 9] makes MEMS fabrication an 
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ever-evolving research area. The complexity associated with MEMS fabrication makes it 

vitally important fabrication be considered in the design of MEMS devices, from the 

beginning.   

2.2 Microelectromechanical System (MEMS) Fabrication 

A majority of MEMS fabrication techniques used today were adopted from 

established microelectronic fabrication methods. Developed during the technological 

revolution, they were sparked by the invention of the transistor in 1947 [10]. After an 

initial focus in silicon based microelectronic integrated circuits, researchers began 

exploring new microdevices which took advantages of the mechanical properties of 

silicon, in addition to its electrical properties. This innovation gave rise to 

microelectromechanical devices, now recognized as MEMS [11, 12, 1].  

MEMS fabrication is subdivided into three processes: Microforming, Bulk 

Micromachining, and Surface Micromachining. Although these processes have very 

different approaches for producing devices, they do share some microfabrication 

techniques and in some cases two or more may be used to produce one device.  The 

following sections provide background information on the procedures and processes 

common to MEMS microfabrication. 

2.2.1 Microforming 

Of the three processes, microforming is the most unique; it does not share its roots 

with the other two processes. It addresses the need to produce high aspect ratio devices 

[13, 14]. Rather than borrowing from established microfabrication techniques, it evolved 

from macrofabrication techniques used in processes like electroplating and injection 
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molding [15]. The standard microforming process used today is called the LIGA 

processes. LIGA, developed in Germany, is an acronym for Lithograhie, 

Galvanoformung, Abformung (Lithography, Electroplating, and Molding) [16]. Figure 1 

is a cross sectional view of a generic LIGA process example. Figure 1(1) encompasses 

the lithography procedures shared by all the techniques. At this point the substrate is 

coated with a thick layer of photoresist which has been masked, exposed, and developed.  

 
Figure 1: Cross sectional view of LIGA fabrication process: (1) patterned and developed 
sacrificial photoresist layer; (2) electroplated metal layer; (3) released metal mold; (4) 
metal mold pressed into pliable media; (5) released structure 

 

The next image shows the results after the metal is deposited using electroplating. 

At this point the photoresist is removed and the metal is separated, leaving a mold to be 

used to create desired high aspect features. Figure 1(4) shows how the mold is then used 

to transfer the design to another media, as a stamp or with injection molding. Finally, 
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Substrate

Photoresist

Metal Layer
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Metal Stamp

Media

Metal Stamp

(5)

(4)
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Figure 1(5) shows the finished result. Although this description is of a generic device 

structure the LIGA process is used to produce complex, high aspect ratio devices. Figure 

2 shows much more complex examples how the LIGA process is used to create high 

aspect ratio MEMS devices. The Figure 2 images are all at the fabrication point depicted 

in Figure 1(1). At this point they can either be used to create metal devices or metal 

stamps, using the electroplating step discussed earlier. 

 
Figure 2: Scanning Electron Microscope (SEM) images of high aspect ratio MEMS 
structures: (a) 1.1mm gear moulds patterned in SU-8 photoresist [17]; (b) 1.78mm gear 
fabricated using PMMA [18]; (c) 2mm high structures with 30µm wide sidewalls 
patterned in SU-8 photoresist [17]. 

 

The important take way from this section is that, by combining photolithography 

techniques with electroplating techniques, microforming can produce micro devices with 

features up to the millimeter range which can be used to mold precise plastic parts or as a 

mechanical part, such as a gear or motor [15]. 

2.2.2 Bulk Micromachining  

Bulk micromachining has been widely used in the production of MEMS devices 

since the 1970’s, although the concept of MEMS came to light in the 1960’s. This is a 

subtractive process which addresses the need for three-dimensional microstructures by 

removing material from the bulk substrate, usually a 300-µm to 500-µm-thick silicon 
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[16]. The portion of the substrate that remains forms the desired three-dimensional 

geometric structure. The removal of material in this process is accomplished using 

physical or chemical techniques, either by dry or wet etching [19]. The key factor of bulk 

micromachining revolves around the role the crystal orientation of the substrate plays in 

the etching profile. Etching can occur in two forms. It can either result in an isotropic, 

crystal orientation-independent, or an anisotropic, crystal orientation-dependent, profile. 

In most cases isotropic etches are the less desirable of the two because it etches the 

material evenly in all directions, making it nearly impossible to construct specific 

geometric structures. Anisotropic etches take advantage of the internal strength found in 

the substrate material’s crystalline structures to create the desired geometrical structure. 

The materials most common to anisotropic etch techniques are those with a diamond 

lattice structure. Figure 3 shows a unit cell representation of a diamond structure, which  

 
Figure 3: Diamond lattice structure fitted into a cubic unit cell [20] 

 

describes the smallest atomic configuration that when repeated constructs a lattice [20]. 

The importance of this lattice structure, when etching, becomes more apparent once the 
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individual crystal planes are observed. This structure is much denser in some orientations. 

Figure 4(a-c) shows the locations of the three primary crystal planes in a unit cell of a 

diamond lattice structure. Top views of the individual crystal planes, as seen in Figure 

4(d-f), show just how different the atomic layouts are when the perspective is shifted. The 

denser atomic configurations, the slower the etch rate. This fact coupled with a build up 

 

Figure 4: The three primary planes in a diamond lattice structure; (a) orientation of (100) 
plane, with respect to a unit cell; (b) orientation of (110) plane, with respect to a unit cell; 
(c) orientation of (111) plane, with respect to a unit cell; (d) top view of (100) plane 
showing the lattice atomic layout; (e) top view of (110) plane showing the lattice atomic 
layout; (f) top view of (111) plane showing the lattice atomic layout  [19] 

 

of etched material act as an etch stop to create unique etch profiles. Figure 5(1) shows an 

example of an anisotropic etch of a silicon wafer with a (100) crystalline orientation. In 

Figure 5(2) a layer of photoresist is spun onto a silicon wafer and an etch window is 

patterned, as described in the photolithography section. Figure 5(3) shows the etch 

pattern resulting from a window large enough and etch time long enough to etch through 

(100)

(d)

(100)

(e)

(110) (111)

(a) (b) (c)

(f)
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the entire wafer. Because of the diamond crystal structure of the silicon wafer, the etchant 

has a much more aggressive attack in the (100) plane than in the (111) plane due to the 

different atomic densities of the planes. The selective etch is what makes it an anisotropic 

process. Figure 5(4) shows how the (111) plane, seen in Figure 4(c and f), acts as an etch 

stop. The different etch rates of these planes, due to their different atomic densities, 

produce this unique etch profile with sidewalls at a 54.74º angle. 

 
Figure 5: Cross-sectional view of an anisotropic etch profile on a silicon substrate with a 
(100) orientation: (1) Silicon substrate with a (100) planer orientation, (2) photoresist 
masking layer applied, (3) photoresist masking layer exposed and developed, the silicon 
substrate etched; (4) photoresist removed, unique 54.74º etch profile produced along 
(111) plane 

 

Reducing the etch area, as to not allow the etchant to penetrate the bottom of the 

wafer, would result in an etch pattern which resembles an inverted pyramid. A reduction 

in the etch time, to ensure the backside of the wafer is not penetrated, would resemble an 
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inverted pyramid with a flat top. Additionally, if a silicon substrate wafer with a (110) 

orientation were used, the resulting etch patterns would produce structures with vertical 

sidewalls along the (111) plane.  This is because the atomic density of the (110) plane is 

so much lower than that of the (111) plane; etching so fast that the etchant does not have 

the time required to etch the much denser (111) plane. 

2.2.3 Surface Micromachining  

Surface micromachining takes place on the surface of the wafer. Contrary to the 

subtractive nature of bulk micromachining, where material is removed from the substrate, 

surface micromachining is an additive process which uses different processing techniques 

to deposit thin films onto the surface of a wafer [15, 21]. These processes are repeated in 

order to construct complex microstructures, layer by layer.  Figure 6 is an illustration of 

how a microdevice, in this case a basic cantilever beam, can be produced using surface 

micromachining techniques. Surface micromachining typically produces one of three 

types of layers: Insulation layers, sacrificial layers, and structural layers [19]. Insulation 

layers, while not shown in Figure 6, are vital to the operation of most MEMS devices; 

they provide a barrier between components of a microdevice, enabling electrical 

operation of mechanical components.   Sacrificial layers, seen in Figure 6(1–4) and also 

referred to as spacing layers, are used to create spacing between component layers [10]. 

They are constructed using a material, such as silicon dioxide (SiO2), which can be 

etched away without damaging other component layers of the device. Once removed 

(releasing the device), it creates three-dimensional components and provides the spacing 

required to allow the freedom of movement for the mechanical components of the device 

[21]. Lastly, the structural and mechanical layers are typically formed of silicon, 
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polysilicon, metals, or alloys [12]. As the name suggests, these are the layers which 

comprise the structural components of the device.   

  

Figure 6: Cross-sectional view of a surface micromachining fabrication process for a 
cantilever beam: (1) sacrificial layer deposited onto a substrate; (2) photoresist masking 
layer applied, exposed, and developed and the sacrificial layer etched; (3) mechanical 
layer deposited; (4) photoresist masking layer applied, exposed, and developed and the 
mechanical layer etched; (5) sacrificial layer etched, device is now released 

 

Although surface micromachining is the most commonly used MEMS fabrication 

technique, it brings three key challenges: Management of stress and strain, control of 

sacrificial layer etch, and prevention of stiction [21]. Regardless if the device is intended 

to minimize stress and strain, to avoid undesirable effects such as bending or buckling, or 

take advantage of them to provide some desired structural effect, management of the 

stress and strain in the structural layers are vital to the operation of all MEMS devices. 
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Additionally, management of the etch profiles of all the component layers is equally as 

vital. Component layer materials must be specifically chosen to ensure the structural 

layers are not inadvertently removed when the device is released during etch of the 

sacrificial layer.  Last is the problem of stiction. This is a term used to describe the action 

which occurs when the surface tension of a fluid, filling the space left behind after the 

sacrificial layer is etched away, pulls a freestanding component into intimate contact with 

another layer or the substrate. While this has little effect on similar devices in the macro 

world, when scaled down to the micro scale it has adverse effects. Because surface 

tension is huge in the micro world this causes the component layer to become 

permanently stuck in that position [16, 21]. There are two device release methods used to 

prevent stiction. The first method uses a vapor etching system. This method can only be 

used to etch of specific materials as not all etchants can be used with this system.  This 

method flows a gaseous form of the etchant over the device while simultaneously heating 

the substrate, thus removing all fluid from the release process. The second method uses a 

supercritical phase transition of carbon dioxide (CO2). For this, the fluid surrounding the 

device is replaced with liquid CO2 in a drying chamber. The chamber then transitions the 

liquid CO2 to a critical pressure and critical temperature, creating an instantaneous 

change of the CO2 from a solid to a gas, thus preventing stiction.   

2.2.4 Commercial Foundry Fabrication Options 

Although the fabrication techniques and procedures that were briefly discussed 

above may appear to be trivial tasks, they are not. In fact, fabrication is arguably the most 

difficult aspect of MEMS research and development. For this reason, companies have 

arisen to provide a much needed service. By laying out very specific design constraints 
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based on perfected fabrication processes, they are able to provide high quality MEMS 

fabrication to outside entities. 

Sandia National Laboratories is a company which conducts research and 

development for national security applications, to include responsibilities in nuclear 

weapons programs [22]. In addition to research and development, they provide a service 

referred to as SUMMiT V™ which stands for Sandia Ultra-planar Multi-level MEMS 

Technology V. Described as a five-level surface micromachining technology, shown in 

Figure 7, consists of a metal layer (PTNMETAL), four polysilicon mechanical layers 

(MMPOLY1-MMPOLY4), one non-mechanical polysilicon layer (MMPOLY0), four  

 
Figure 7: Cross-sectional view of the SUMMiT V™ stack showing realizable fabrication 
features [23] 

 

silicon dioxide sacrificial layers (SACOX1-SACOX4), a silicon nitride electrical 

isolation layer, and a thermal oxide isolation layer, all atop a highly doped n-type silicon 

substrate [23]. 

MEMSCAP® Inc. is a commercial company which provides cost-effective, 

proof-of-concept MEMS fabrication to industry, universities, and government labs. This 

service is referred to as Multi-User MEMS Process (MUMPs®), and is offered in a 

variety of mediums which include polysilicon, silicon-on-insulator (SOI), metals, and 

Silicon Nitride

Thermal OxideSubstrate
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piezoelectric materials.   One such process is PolyMUMPs™ which, as its name suggests, 

utilizes polysilicon to construct the structural layers. It is a conformal seven-layer 

polysilicon surface micromachining process [24]. Figure 8 shows a cross-sectional view 

of the PolyMUMPs™ process.  The seven layers are made up of a nitride layer deposited 

across the entire wafer to electrically isolate the substrate; three polysilicon layers, which 

together make up the MEMS device; two oxide layers between the polysilicon layers 

necessary for releasing the device; and a metal layer.  

 
Figure 8: Cross-sectional view of the seven layers of the PolyMUMPs™ Process [24] 

 

By allowing customers to purchase only the space of the wafer they require, 

companies are able to keep research and design fabrication costs down while reducing the 

waste produced during fabrication.  Due to the multi-user nature of MUMPs®, design 

constraints are given to establish a single fabrication process [24]. These constraints are 

referred to as the PolyMUMPs™ design rules and are a set of requirements and 

advisements derived from the capabilities of individual process steps.  For the most part, 

they are defined by the resolution and alignment capabilities of the lithography system.  It 

is important to note that minimum line width and spaces are rules which ensure 
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compatibility between layouts and tolerances.  Violation of these rules may result in 

missing, undersized, oversized or fused features [24]. 

2.3 MEMS Transducers  

Transducers are extensively used for the measurement and control of 

instrumentation in nearly all scientific and industrial fields, from biomedical to 

automotive applications [25]. A transducer is a device which acts as a conduit for the 

transfer of energy from one domain to another (i.e., chemical to electrical or electrical to 

mechanical). Simply put transducers are devices which convert one form of energy to 

another, and in terms of MEMS devices, it refers to both sensors and actuators [9, 26]. 

2.3.1 Sensors 

Sensors are devices which measure some type of physical quantity in their 

environment and output a signal, usually electrical, to relay that measured parameter 

change [27, 28]. There are numerous types of sensors which can be divided into 

categories based on their domains of operation:  Electrical, measuring voltage, current, or 

charge; Thermal, which measures changes in temperature, heat, and heat flow; 

Mechanical, which measures changes in force, pressure, velocity, acceleration, or 

position; Chemical, which monitors changes in chemical concentration, composition, and 

reaction rate; Magnetic, which measures magnetic field intensity, flux density, or 

magnetization; Radiant, which measures magnetic wave intensity, wavelength, 

polarization, and phase [9]. Recognizing that there are nearly an infinite number of 

possible applications for sensors and the considerable overlap between categories, it is 

clear that there will be some cases where a sensor device will not fit into any one 
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category or may belong to more than one. Generally speaking, sensors take in 

information from the outside world and relay a signal to the system, effectively 

converting mechanical energy into electrical energy [9]. 

2.3.2 Actuators 

On the other hand, actuators take a signal from the system and physically interact 

with the outside world (converting electrical energy into mechanical energy) [25]. 

Ideally, an actuator would operate using low power, be capable of fast switching speeds, 

maintain robustness and efficiency across all ranges of mechanical and environmental 

conditions, have a high power to mass ratio, and be linearly  proportional between a 

control signal and operation parameters such as force, torque, and speed [9]. 

Unfortunately there is no such thing a ‘perfect’ actuator. In some applications one ‘ideal’ 

attribute contradicts another.  In practice, actuator design is an exercise in trade-offs, 

maybe conceding actuation speed to reduce operating power or decreasing device 

robustness in order to increase the range of motion [9]. Much like sensors, there are a 

variety of actuation methods for actuators, the more commonly used methods are: 

Thermal, using the expansion of a heated material to apply a force; thermal bimorph, 

which takes advantage of the difference in coefficients of thermal expansion (CTE) of 

two bonded materials to apply a force; electrostatic, using attractive force between two 

oppositely charged plates; piezoelectric, using an electrically induced strain or stress 

proportional to an applied electric field to apply a force (opposite a sensor) [9]. 

2.3.3 Cantilever Beams 

A common MEMS device used for transducers is cantilever beams; these are 

beams having one end fixed to a rigid structure while the other end is allowed to move 
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freely. Figure 9 shows a simple cantilever beam. These structures have been used for 

centuries, on the macro scale, in all types of architectural structures such as bridges and 

platforms. Building upon Timoshenko’s work, characterizing the effects of material 

strengths in the early 1900’s [29], cantilever structures found applications in the micro 

environment as sensors and actuators [8].  A few examples of typical MEMS applications 

of cantilever beams are electrostatically driven relays, piezoelectric sensors, and 

electrothermal actuators. The basic parameters to consider when characterizing the 

functionality of cantilever beams are the spring constant, denoted by k, and the resonance 

 
Figure 9: Simple cantilever beam 

 

frequency, fres [30]. These are used in conjunction with specific material properties of the 

cantilever beams in order to predict the operation characteristics of cantilever beams. 

Hooke’s Law is used to characterize the spring constant in relation to an applied force, F, 

and the resulting deflection of the beam, denoted δ.  

 F kδ= −  (1) 

When the Young’s modulus, E, of the material and the beam length, l, are considered the 

overall stiffness of the material (i.e. spring constant) can be written as 
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where I is the moment of inertia for a rectangular cantilever beam described by 

 
3

12
wtI =  (3) 

when w is the beam width and t is the thickness of the beam [30].  A change in surface 

stress at the end of the cantilever beam produces a bending moment, M, which can be 

expressed as: 

 M Fl=  (4) 

Substituting the two previous equations into the equation for the radius of curvature, ρ, 

results in a formula called Stoney’s equation, which also incorporates Poisson’s ratio, v, 

for the cantilever beam material [30, 31, 32]. 

 2

1 6(1 )M v
EI Et

σ
ρ

− ∆
= =  (5) 

The variable, Δσ, refers to the difference between the stress on the top and bottom 

surfaces of a cantilever beam. Expressing the resonance frequency (the natural frequency 

of vibration determined by the physical parameters of a given material) [33] as a function 

of the spring constant produces a simplified equation, 

 res
kf
m

=  (6) 

where mass, m, is mass density times the thickness of the beam times the length of the 

beam times the width of the beam. Equation 6 shows how the resonance frequency 

increases as the spring constant increases and as the mass of the beam decreases [30]. The 

preceding equations illustrate how basic cantilever beam operation is closely related to 

the mechanical stress, as it relates to material properties and geometries of a device [34]. 
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2.3.3.1 Electrostatic Cantilever Beam Transducer 

Electrostatic actuation is based on the principle that two plates with opposing 

charges will attract one another [35], where one plate is fixed and the other is mobile 

[36]. The force generated in electrostatic devices are always attractive but can be used to 

actuate in a parallel fashion, when the air gap distance remains constant, or in a 

perpendicular fashion, where the air gap is reduced as a result of the attractive force.  

Figure 10 shows a parallel plate actuator with an air gap distance, g, and an overlap area, 

A. In this example, a voltage difference is applied across an air gap creating an electric 

field which draws the two sides together. Early MEMS researchers applied this simple  

 
 Figure 10: A simple parallel plate electrostatic actuator [35] 

 

approach to describe cantilever beam action, using principles of superposition. However 

this is not a good representation as it only holds for linear systems [8]. Ignoring any 

fringe effects, the stored energy, W, at a voltage, V, can be expressed as: 
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with the resulting downward force between the plates expressed by [35]: 
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The fact that the attractive force is greater as the air gap is reduced demonstrates how the 

force is a nonlinear function of the applied voltage as well as the air gap saturation [35]. 

Because of this non-linearity for actuation across an air gap, numerical analysis, such as a 

finite element method (FEM) or a finite difference method, is used to characterize 

electrostatic actuation of cantilever beams. Figure 11(a) and (b) show simple 2D and 3D 

models of a cantilever beam. Where L is the length and undeformed position of the beam  

 
 Figure 11: Simple electrostatic cantilever beam actuators: (a) 2D representation of a 
cantilever beam; (b) 3D representation of a cantilever beam 

 

at rest, shown by the dotted rectangle, and  Δd represents the vertical cantilever beam 

deflection at the free-end, w is the width of the beam, t is the beam thickness, with a 

voltage, V, applied across an air gap, g.  If it is assumed that the cantilever beams shown 

in Figure 11 experiences no axial force, which is when the axial force equals zero, the 

beam equation is [8]: 
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applying boundary conditions, where the transverse force Ft and the bending moment M 

at x = l are zero, the approximation for the deflection of a cantilever beam subjected to a 

uniform load distribution is [8]: 
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      = ∆ − + = ∆ Ψ      
       

 (10) 

where Ψ is the mode shape of the beam. Substituting d1 for d in Equation (9), then 

multiplying by Ψ and integrating along the beam length results in an equilibrium force, 

Fe equation at voltage, V [8]: 

 ek d F∆ =  (11) 

where k is the stiffness of the beam, expressed in Equation 2. Further derivation leads to 

expressions for dimensionless pull-in deflection and force, as functions of an applied 

voltage, resulting in a required pull-in voltage, Vpi [8]: 
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where the area, A, is described by the following equation.  

 2
5

A wl=  (13) 

Once the electric field generated by an applied voltage exceeds initial air, an attractive 

force is experienced between the cantilever beam and electrode. When the force exceeds 

the equilibrium force in the cantilever beam the beam collapses to the electrode. This is 

because the electrostatic force is greater than the restorative force of the cantilever beam 

and the voltage at which this occurs is called the pull-in voltage [37, 8]. 
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2.3.4 Bimorph Cantilever Beams 

Much more complicated cantilever beam transducers are those with thermally 

induced mechanical stresses, commonly referred to as bimorph or bimetal cantilever 

beam. Bimorph cantilever beam transducers exploit the differences between the 

coefficients of thermal expansion (CTE) of two dissimilar materials [38, 39]. CTE is a 

material dependent variable, denoted as α, and is defined as the amount of thermal 

expansion in a material, per unit length, per degree of temperature change [19].  As the 

material undergoes a temperature change, the dimensions in the x, y, and z directions are 

changed from the original dimensions of (x, y, z) to expanded dimensions (x+Δx, y+Δy, 

z+Δz) [8]. These expanded dimensions is described by Equation 14, where T0 equals the  

0( )x x T Tα∆ = −  (14) 

starting temperature and T is the ending temperature of the material. In bimorph 

cantilever beams, two materials are deposited at different temperatures, in contact with 

each other, and exposed to a change in temperature. This temperature change, coupled 

with the different material properties, will cause one material to expand more than the 

other and induce stress into the system.  This stress causes the entire structure to bend or 

deflect [40]. Figure 12 is a cross-sectional view of a simplified bimorph cantilever beam, 

where l is the beam length and E1 and E2 are the Young’s Moduli, w1 and w2 are the 

widths, and t1 and t2 are the thicknesses of the specific material layers.  

In a common surface micromachining process, layers are deposited at elevated 

temperatures, well above room temperature. When the material with the lower melting 

temperature is deposited on top of one with a higher melting temperature, which is 

relaxed at the time of the second deposition, a stress is introduced into the system. This 
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is because as the top layer cools back to room temperature it contracts, pulling on the 

surface of the second layer.  Upon release, the stress introduced by the top layer pulling 

on the surface of the bottom layer causes the bimorph cantilever beam to curl upward.  

 
Figure 12: Cross sectional views of a bimorph a cantilever beam: (a) front view of beam; 
(b) side view of beam 

 

The relationship between the driving force (e.g., change in temperature) and the 

beam response (e.g., deflection) must be analyzed to characterize bimorph cantilever 

beam transducers [8]. In order to do this, the effective flexural rigidity (EI)eff  and the 

radius of curvature, R, must be obtained.  The driving factors in this characterization are 

the Young’s Modulus of the material layers, the specific beam geometries, and an 

applied moment M at the end of the beam. Referring to the bimorph cantilever beam 

shown in Figure 12, the effective flexural rigidity is described by: 
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The effective flexural rigidity of the bimorph cantilever beam, described above, can be 

further developed to characterize the static and dynamic response of the beam to an 

external force and moment [8]. From this, the following equations for the radius of 

curvature, ρ, can be expressed as a function of the bending moment or the moment of 

curvature, M, or the beam geometries and material properties. When ε is the relative 

strain of the bimorph beam (Equation 21) these are written as: 

 
21 2

2

( ) 1 11
2 3(1 )

effEI t t pqrR p
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  + +
= = + +  +   

 (17) 

Then substituting d2y/dx2 = R into the above equation yields M [8, 37]: 
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For a temperature change, ΔT, the elongation of the different material layers are given as 

δ1 = (α1ΔT) and δ2 = (α2ΔT), where α refers to the coefficient of thermal expansion for the 

specific material layer [8]. This means the relative strain, ε, in the bimorph cantilever 

beam can be written as: 

 2 1
2 1 2 1( ) ( ) ( )T T T

l
δ δε α α α α−

= = ∆ − ∆ = ∆ −  (19) 

Assuming a uniform strain distribution in a bimorph cantilever beam, the two 

material layers are perfectly bonded at the interface, and the bottom layer length, l2, is 

fully covered by the top layer, l1, as shown in Figure 12 when l = l1 = l2, we can assume 

an equivalent force, F, exists at the tip of the beam, responsible for counteracting the 

stress- induced tip deflection [41, 42]: 
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 3

3EI dF
l
∆

=  (20) 

and by applying Castigliano’s theorem the equations for beam deflection (vertical 

displacement), Δd, and angular displacement, θ, are as follows [8]: 
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and 
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l lF M
EI EI

θ = +  (22) 

Once longitudinal stresses in the straight layers are considered the equation for the 

effective moment Meff  is expressed as [8]: 
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A majority of bimorph cantilever beam analysis, including the preceding 

equations, are derived from Timoshenko’s work with bimetal thermostats which 

provided an expression for the radius of curvature in a bimorph cantilever beam nearly 

one hundred years ago[43]. It is often referred to as the bimetallic effect and is still used 

as an operating principle for thermally operated bimorph cantilever beams [34]. It 

assumes the length of the two material layers to be equal and expresses the tip deflection 

(vertical displacement) as a function of the different material properties: 
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Although this equation was originally conceived to evaluate bimorph thermostat 

characteristics, it can be modified to predict stress-induced deformation in a multitude of 

MEMS bimorph cantilevers beam applications [34, 44]. 

2.3.4.1 Electrothermal Bimorph Cantilever Beam Transducer 

One such device, used for a variety of actuation applications, is an electrothermal 

bimorph cantilever beam. As stated above, bimorph actuators leverage the material 

characteristics of two different materials to induce mechanical force, specifically 

different coefficients of thermal expansion of the materials. When the actuator is heated, 

the materials expand at different rates, causing the device to bend. Figure 13 shows an 

example of a basic bimorph cantilever beam. This device can be actuated in two ways, 

depending on which material has the higher CTE. In one case material 1 has the higher 

CTE and is deposited at a much higher temperature than material 2. As the cantilever 

beam cools to room temperature, material 1 contracts, causing the beam to deform and  

 
Figure 13: Schematic of a thermal bimorph cantilever beam actuator.[45] 

 

bend upward. Once the beam is heated, heating material 1 faster than material 2, the 

stress contained in the system is relaxed and the beam actuates downward, to its 

undeformed state. The second way the beam in Figure 13 could be actuated occurs when 
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Material 2
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material 2 has a higher CTE. In this case material 2 is in its relaxed state prior to the 

deposition of material 1 and resulting in an undeformed initial starting position. Once the 

beam is heated material 2 expands more rapidly than material 1 causing the beam to 

actuate upward, into the deformed state. 

2.3.4.2 Piezoelectric Bimorph Cantilever Beam Transducer 

Piezoelectric materials are unique; they produce a predictable response dependent 

upon a specific applied stimulus which can be leveraged in a multitude of applications 

[46].  When a stress is applied to the crystalline structure of piezoelectric materials a 

small current is generated; inversely an applied current will produce a strain in the 

structure [47]. Figure 14 is an illustration of a simplified piezoelectric sensor in which 

this unique material characteristic is leveraged. 

 
Figure 14: Schematic of a piezoelectric bimorph cantilever beam sensor. [48, 49] 

 

In this example a force is applied, by some outside factor, which induces a stress 

into the system. The elongation of the piezoelectric material generates a small electrical 
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current in the piezoelectric layer which can be measured as a voltage difference in the 

system. Consequently the inverse is also true. An applied electric field, generated across 

a piezoelectric material, will cause the material to elongate, inducing strain between the 

piezoelectric and structural layers causing the beam to bend. In this case it is considered 

an actuator [50, 51]. 

2.4 MEMS Micro-mirror Actuation Schemes 

When investigating actuation methods for micro-mirrors, it becomes abundantly 

clear there are a vast number of applications for MEMS micro-mirror arrays and nearly 

as many designs to meet the specific requirements of those applications. The MEMS 

industry has researched and developed many ways micro-mirror actuation can be 

accomplished, which each bring unique constraints on performance. Investigating 

actuation methods spanning the past 10 years, the three most heavily researched methods 

for actuation of micro-mirror arrays are electrothermal actuation [6, 52, 7, 53, 54, 55], 

electrostatic actuation [56, 3, 5, 57, 4, 58, 59], and piezoelectric actuation [60, 61, 62, 

63].  While not any one method is ‘better’ than the next, they all have benefits and 

drawbacks. The challenge then becomes how to leverage the attributes of a specific 

actuation method, required to meet design criteria, while minimizing any drawbacks 

associated with that method. 

2.4.1 Electrothermal Actuation 

The first actuation method investigated in this thesis was electrothermal micro-

mirror actuation. Electrothermal actuation is based on one of two methodologies, thermal 

bimorph actuation or thermal-pneumatic actuation [55, 53]. Electrothermal bimorph 
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actuators operate in the same manner as the bimorphs previously discussed. On the other 

hand, thermal-pneumatic actuators rely heavily on differing geometries, rather than 

depending different CTEs in the material layers, to induce actuation [8, 26]. Figure 15 is 

an example of both types of electrothermal concepts integrated into one design. Not only 

was a bimorph layer used on sections of the actuator beams, but portions of those 

sections were removed from the beams. This change in geometry reduced the rigidity of  

 
Figure 15: SEM image of an electrothermally driven bimorph micro-mirror actuator [54] 

 

the beams in that area and assisted in the bimorph action. Of the two, electrothermal 

bimorph actuation tends to have a faster response time and lower power consumption 

than thermal-pneumatic actuation [55], because of the different properties of the two 

materials, and tends to produce the more desirable results in most designs.  

While optical deflection angles as high as 124 degrees [7, 53] and response times 

as of less than 0.4 ms [6] have been observed in electrothermally driven, single-plane 

micro-mirror actuators, they have not successfully been implemented in a duel-plane 

micro-mirror actuator designs. Current electrothermal micro-mirror actuation designs 
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produce results with angular deflections falling from 10 degrees to just over 25 degrees, 

fill-factors in the range of 54% to 95% (with creative ‘hidden’ actuator layouts similar to 

the one shown in Figure 16), and response times of 8—13 ms [52, 54, 55]. 

2.4.2 Electrostatic Actuation 

Electrostatic actuators utilize a voltage difference between the actuator assembly 

of the system and an electrode to induce the attractive force needed to actuate the device 

[8]. In most applications this method is preferred due to its low power consumption and 

fast response times [56]. But, as expected, it brings with it drawbacks in the forms of 

small actuation ranges and high actuation voltages [54]. These drawbacks are due to the 

proximity restrictions the system requires to generate an attractive force sufficient to 

actuate the device. Equation 8 shows how these negative effects are compounded by any 

increase in the distance between the actuator and electrode, by a factor of g2 [3].  

In addition to small actuation ranges and high actuation voltages, stiction is also a 

cause for concern. Recall that stiction occurs when two MEMS device elements come 

into intimate contact and remain stuck together, thus rendering the device inoperable. 

While this is a concern in all MEMS devices, it is especially worrisome for electrostatic 

devices since the attractive force required for actuation may inadvertently bring the 

device into intimate contact with the electrode [8, 21, 25]. The two most common 

electrostatic micro-mirror actuation methods are comb-drive (Figure 16) and parallel 

plate (Figure 17) actuators.  

Comb-drive actuators can easily be used for micro-mirror actuation with very 

high fill-factors in the range from 70% to 99% in the case of the ‘hidden’ comb-drive 
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actuators, shown in Figure 16 [5, 57, 58]. This design uses two separately controlled 

comb-drive assemblies, an upper and a lower.  This allows for quad plane actuation of 

 
Figure 16: SEM images of comb driven electrostatic actuators: (a) micro-mirror array, (b) 
close-up of a comb-drive micro-mirror actuator [58] 

 

the micro-mirror. Comb-drive actuators have very high response times of ~10 µs, the 

main drawback being that they only achieve deflection angles in the range of 0.2—6.7 

degrees [56, 5, 57, 58].  

When looking at parallel plate configurations of micro-mirror actuators, as seen in 

Figure 17, the significant drop in the fill-factor of these designs is immediately apparent. 

 
Figure 17: SEM image of parallel plate actuated micro-mirror [59] 

 

This is due to the use of anchors and cantilever beam support elements configuration, 

which lay on the outer perimeter of the micro-mirror. When incorporated into an array of 
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micro-mirrors, these designs produce fill-factors in the range of 65%, with no significant 

gains in displacement angle or response time [3, 59]. 

2.4.3 Piezoelectric Actuation 

Piezoelectric micro-mirror actuation is a relatively new field of study gaining 

traction with researchers in the last few years. Although there have been studies on the 

piezoelectric effect with respect to micro-mirror actuation, they are in no way as 

extensive as those in the areas of electrothermal and electrostatic. In general,  the 

advantages piezoelectrically actuated micro-mirrors produce are considered to be the 

simple structures, small sizes, high scanning speed, low driving voltages and low power 

consumption [61]. Piezoelectric actuators are made up of multiple layers of different 

materials which are deposited and released, the most common being a Lead (Pb), 

Zinconate (Zr), and Titanate (Ti) compound called PZT [60]. Figure 18 shows an SEM  

 
Figure 18: SEM of a Lead (Pb), Zinconate (Zr), Titanate (Ti) or PZT based piezoelectric 

micro-mirror: (a) single device (2 mm x 2 mm), (b) close-up of actuator, (c) cross-
sectional view of unimorph layer [61] 

 

of a piezoelectrically actuated device, which was fabricated in this way. For this design, 

the piezoelectric material is used to induce a stress into the structure. This stored stress is 
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released once the piezoelectric material is in the presence of an electric field. At that 

time, the piezoelectric material experiences a realignment of its crystalline structure; this 

relaxes the initial stress and is the driving force for the actuator [8]. The research of 

multiple designs were reviewed, which revealed that the majority of piezoelectrically 

actuated micro-mirrors can achieve deflection angles of 2.8—5 degrees and fill-factors 

of around 30% [60, 62, 63, 64, 65, 66]. 

2.5 Finite Element Modeling  

Finite element modeling (FEM) refers to computer-aided design (CAD) software 

which is used by designers to model and simulate complex structures. It accomplishes 

this difficult task by first characterizing smaller element, finite element analysis (FEA), 

of the structure then combines those results into a single model and/or simulation. MEMS 

design and fabrication is a unique discipline, which often leverages FEM tools to increase 

the efficiency of research and development (R & D). These tools allow the modeling and 

simulation of all new designs prior to fabrication, reducing both time and cost of ‘trial-

by-fabrication’. There are many FEM tools available, but in MEMS design and 

fabrication there are three which appear most often ANSYS, COMSOL Multiphysics®, 

and CoventorWare®.  

ANSYS is a comprehensive software suite expanding the entire range of physics, 

which simulates virtually all engineering fields. This tool provided designs scalability, 

from macro to micro, of the comprehensive multiphysics foundation and architecture. 

ANSYS Inc recently partnered with Tanner EDA to include the ability to import 3D 

MEMS Pro files from Tanner EDA’s L-Edit design layout editor, a common tool used by 
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MEMS designer which is discussed in the following chapter. ANSYS’s workbench 

framework also provides the user a simple drag-and-drop interface, with bi-directional 

parametric CAD software, automated meshing and project-level updates, pervasive 

parameter management, and integrated optimization tools [67, 68, 69]. 

COMSOL Multiphysics® is a multiphysics FEM software tool for electrical, 

mechanical, fluid flow and chemical applications. The COMSOL Multiphysics® 

multipurpose software platform is ideally suited for MEMS applications and boasts to 

contain the “Best-in-class” piezoelectric and piezoresistive FEM tools currently available. 

It includes modules for analyzing stationary and transient domains, fully-coupled 

eigenfrequency, parametric, quasi-static, and frequency responses. COMSOL 

Multiphysics® also allows the user to perform lumped parameter extraction of 

capacitance, impedance, and admittance on MEMS designs [70, 71].  

CoventorWare® is a FEM tool used to predict complex, multiphysics behaviors in 

MEMS devices, with a focus in MEMS-specific capabilities. It is ideal for simulating the 

mechanical, electrostatic, piezoelectric, piezoresistive and thermal effects for MEMS 

sensors and actuators. The CoventorWare® suite is capable of simulating devices 

sensitivity, linearity, frequency response, signal-to-noise ratio, temperature stability, and 

actuation times. Coventor Inc. has also partnered with MEMSCAP® Inc. and Tanner 

EDA to include MUMP’s™ specific material properties in its material library as well as 

the ability to import design files from Tanner EDA’s L-Edit design layout editor. 

Additionally, CoventorWare® provides designers a 2D-to-3D model builder, automatic 

meshing, and field solvers [72, 73].  
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Each of these FEM tools provides a multiphysics based platform with the 

capability of simulating MEMS devices. Although slightly different, they are all capable 

of performing the unique multiphysics challenges, which come with the simulation of 

MEMS devices. 

2.6 Summary 

This chapter presented a background literature review of previous and current 

research pertaining to MEMS micro-mirror design, fabrication, and applications. Various 

microfabrication procedures and techniques were introduced, covering the three types of 

fabrication techniques common to MEMS fabrication, and commercially available 

fabrication options. These topics were followed by a brief review of transducers, 

highlighting the differences and providing simple examples for sensors and actuators. 

The final section of this chapter provided an extensive review of current micro-mirror 

research, covering electrostatic, electrothermal, and piezoelectrically actuated micro-

mirror assemblies. The information presented in this chapter builds a foundation of 

understanding for research topics covered in the remainder of this thesis.  
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3. METHODOLOGY 

3.1 Chapter Overview 

Currently, meeting all beamsteering capability requirements of this project (high 

fill-factor, large aperture micro-mirrors with deflection angles of 25º, eventual goal of 45º 

on 4-axis, and actuation speeds < 1 ms) cannot be meet since micro-mirrors with all these 

functional capabilities do not exist. This chapter presents a novel design approach, 

analytical modeling, finite element modeling, device fabrication, post-fabrication 

processing, tools and equipment, and device characterization methodologies used in the 

evaluations of this unique design solution. 

3.2 Design 

To overcome the complexity of combining all these design capability 

requirements into a single device, each requirement was considered individually. This 

approach allows each design choice to be chosen to maximize the performance of that 

capability itself while considering the effect it has on other possible choices. The first 

design decision made was that MEMSCAP’s® PolyMUMPs® fabrication process would 

be used to fabricate the prototypes for this research. This decision not only allows the 

research focus to be on the functional design of the device rather than fabrication, but it 

also affords time for three fabrication opportunities during the research timeline. It also 

solidified specific initial design constraints which provided a starting point for the design. 

Next, the requirements with limited design options were identified as being high fill-

factor and fast actuation. After those design elements were identified, the remaining 

capability requirements were the 4-axis actuation and high deflection angles. 
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The first design feature determined by the capability requirements was the 

actuation method. Given the requirement of fast operation of the device (< 1 ms) the best 

choice is electrostatic actuation. Recall this micro-mirror platform actuation assembly is 

to be used to drive a micro-mirror atop a pillar (Figure 19), developed by AFRL 

researchers, which is fabricated separately and then bonded to the platform. This means  

 
Figure 19: Illustration showing how platform actuation assembly is to be incorporated 
into a micro-mirror array: (a) a cross-section of a single micro-mirror element with mirror 
and pillar assembly bonded to micro-mirror actuation assembly, (b) a representative top 
view showing the high fill-factor mirror array 

 

that in order to have a high fill-factor, also shown in Figure 19, the maximum assembly 

dimensions are directly tied to the size of the micro-mirror itself. To accommodate the 

preliminary designs of the ARFL components, the following micro-mirror platform 

assembly elements were chosen. Given AFRL’s micro-mirrors were squares ranging 

from 800 μm to 1 mm, with the expected final mirror dimension choice on the higher end 
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of that range, and 100 μm of separation the entire assembly was designed to fit within a 1 

mm square. Additionally, the pillar dimensions of the AFRL component also had a range 

of 200 μm x 200 μm to 500 μm x 500 μm (the latter is shown in Figure 20) which needed 

to be considered. This aspect proved to be a little more problematic because the 

dimensions of the micro-mirror platform determine the platform clearance required to  

 
Figure 20: A top view SEM image of a micro-mirror platform actuation assembly with 
four 5-beam "zipper" actuators and a 500 μm x 500 μm platform 

 

achieve high deflection angles. While it is in the best interest of this research assembly to 

reduce the size of the platform as much as possible, it becomes increasingly more 

difficult to bond a large pillar to smaller platforms. For this reason the initial designs use 

a 500 μm square platform, shown in Figure 20, with a 350 μm platform option to fit into 

the same spacing. 

Given the previously identified design elements, approximately 250 μm x 500 μm 

of space on each side of the platform remained in which to design an electrostatically 
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driven actuation scheme. To address the 4-axis operational capability requirement, a four 

actuator design approach was chosen with one actuator assembly for each axis. Figure 20 

shows how four individual actuators will be oriented to actuate a micro-mirror platform. 

All the design element choices made up to this point were determined rather easily, 

leaving the most challenging aspect of this design to consume a majority of the research 

efforts. 

The challenge when attempting to achieve large deflection angles in micro-mirror 

actuator assemblies is due to the limited clearance, which is governed by the thickness of 

the sacrificial layers used during the device fabrication process. As standard fabrication 

processes limit the sacrificial layers to a couple of microns and this research requires 

initial deflections in excess of 150 µm, there were few options. This design addresses this 

problem by lifting the platform to an initial starting position upon release by using 

bimorph cantilever beams.  

In this research, a new electrostatic “zipper” actuation assembly design is 

examined. This “zipper” approach utilizes aspects observed in electrothermal designs, 

which reach the initial deflections required, incorporated into an electrostatic actuation 

scheme. It uses a series of partial-bimorph cantilever beams in such a way as to allow for 

the deflections of each beam to be added together in order to reach extremely high 

deflections. This allowed the design and characterization of a single partial-bimorph 

cantilever beam which was then used to characterize the operation of the entire system. 

Figure 21 is a cross-sectional view of a partial-bimorph cantilever beam with a 50% 

bimorph segment, but can occupy anywhere from a 1% to 99% bimorph beam’s total 

length. This design approach greatly reduced the complexity for the characterization of 
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the entire actuation assembly and had two benefits. First, the initial deflections of each 

beam continue to be accumulated to achieve greater total deflections, for as long as space 

allows. Second, this approach requires a much lower pull-in voltage than traditional 

 
Figure 21: Cross sectional view of partial-bimorph cantilever beam 

 

electrostatic designs with comparable platform deflections because the pull-in of one 

beam will reduce the height of subsequent beams, making it easier to actuate the entire 

assembly. This is because once one beam is actuated downward the next beam is then at 

the initial stating position of the first, thus requiring little to no more voltage to achieve 

pull-in. Figure 22 shows a simple 3-beam “zipper” actuator. The primary anchor is the 

portion of the actuator which is attached to the substrate. The primary anchor also 

performs another function, namely breeching the PolyMUMPs® nitride layer to ground 

the polysilicon layer through the substrate and effectively grounding the entire platform 

assembly. This is used in conjunction with a voltage applied to a polysilicon electrode 

atop the nitride to actuate the assembly.  Each pair of adjacent beams is connected by a 

secondary anchor. These anchors are not attached to the substrate and indicate where the 
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top of one beam is connected to the bottom of the subsequent beam. The simple design 

shown in Figure 22 has two secondary anchors. Given that these devices were fabricated 

using PolyMUMPs®, the layer materials and thicknesses are fixed parameters [74]; 

therefore, the remaining design elements were chosen to fit in the available space. The   

 
Figure 22: 3-beam polysilicon/gold bimorph “zipper” actuator design with half length 
bimorph layer, at the anchor end of beams. 

 

initial bimorph actuator dimensions were as follows. The maximum beam length of 500 

μm was chosen with initial widths of 30 μm (polysilicon layer) and 24 μm (metal layer). 

The secondary anchors were each 10 µm x 20 µm (polysilicon layer), which resulted in a 

20 µm spacing between the beams. The final design consideration was the connection 

point between the actuator assemblies and the platform. For this, U-shaped polysilicon 

anchors were used. Figure 23 is a SEM image of released micro-mirror platform 

assemblies, showing the attachment locations for the U-shaped. Actuator assemblies with 

an odd number of partial-bimorph beams are connected at the corners of the platform 

while those with an even number of beams are connected at the center of the platform, 

using a 250-μm-long, full-bimorph beam to reach the center of the platform.  

Using the initial design choices described above and recalling that the elements 

which have the largest effect on bimorph beam deflection are the beam thickness and 

length (Equation 26) only the metal layer length remained to be examined for optimal 
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design options. At this point analytical modeling was used to determine the optimal 

length of the metal bimorph layer.  

 
Figure 23: SEM image of released micro-mirror platform assemblies showing the 
attachment locations for U-shaped anchors, which connect “zipper” actuators with both 
an even number and an odd numbers of partial bimorph beams to the micro-mirror 
platform: (Top/Left) a 9-beam actuation assembly; (Top/Right) a 7-beam actuation 
assembly; (Bottom/Left) a 6-beam actuation assembly; (Bottom/Right) a 12-beam 
actuation assembly 

 

3.3 Analytical Modeling 

Analytical modeling was used to evaluate the effect metal layer lengths has on the 

overall initial deflection of a partial-bimorph cantilever beam. This was accomplished in 

order to determine the optimal layer length needed to produce the highest initial 
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deflections. Additional, analytical modeling was used to calculate the expected pull-in 

voltages associated with partial-bimorph beams with different initial deflections. 

3.3.1 Initial Deflections 

In an ‘at-rest’ state, the partial-bimorph actuator is deflected upward (deformed), 

as described previously. The methodology for calculating the maximum initial deflection 

of a partial-bimorph cantilever beam is presented here; to do this the beam will be 

analyzed in two parts.   Part one uses Equation 24 and provides the portion of the beam 

deflection resulting from the bimorph segment of the cantilever beam, d1. Part two 

calculates the deflection of the non-bimorph segment of the beam, d2 = l2sinθ. Figure 24 

is a cross-sectional view of a partial-bimorph cantilever beam illustrating how d2 is to be 

  
Figure 24: Cross-sectional view of a partial bimorph cantilever beam illustrating how 
initial beam deflection will be calculated 

 

calculated. To calculate the deflection of the non-bimorph segment of the beam, d2, the 

following process is used. First, the radius of curvature, R (Equation 17), is calculated 

using the effective flexural rigidity, from Equation 15, and the effective moment 
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Equation 23. At this point two assumptions are made about the cantilever beam being 

analyzed. First, l1 is not significantly changed as a result of the contraction of the metal 

layer, meaning l1 equals the arch length; and second, the beam segment, l2, has no 

significant internal stress and is therefore perfectly straight. Working with these 

assumptions, α is found by first calculating it in radians, expressed as αr = l1 / R, and then 

converting to degrees, where α = (αr 180)/π. Figure 24 clearly shows α = 90-β and also θ 

= 90-β. This means α = θ, therefore  

1
2 2 2 2

180sin sin sinr
ld l l l
R

θ α
π

 = = = 
 

 (25) 

This value is then added to d1 in order to get the total cantilever deflection   

 1 2  d d d∆ = +  (26) 

3.3.2 Pull-in Voltages 

In addition to the initial deflection, the expected voltage required to pull-in the 

partial-bimorph cantilever beam will also be modeled analytically. Figure 25 is a cross- 

sectional view of a partial-bimorph cantilever beam illustrating how pull-in voltage will 

be calculated. Recalling the previous declaration that the non-bimorph section of the 

beam is perfectly straight, it follows that pull-in of the bimorph segment will also pull-in 

the non-bimorph section, and thus the non-bimorph segment can be ignored in this 

model. In order to simplify this calculation three assumptions are made: The deflection at 

1/2 ll occurs at 1/2 dl; the pull-in of the first half of the bimorph segment will bring the 

second half of the bimorph segment down to the starting position of the first, allowing for 

pull-in of the entire segment; and lastly, the pull-in models for simple cantilever beam are 

adequate to represent this small bimorph segment. 
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Figure 25: Cross-sectional view of a partial bimorph cantilever beam illustrating how 
pull-in voltage will be calculated 

 

These assumptions allow the use of Equation 12. This equation allows the model 

to account for the bimorph nature of this cantilever beam design, when the effective 

flexural rigidity (Equation 15) is used to calculate the stiffness (Equation 2) and the 

relative strain (Equation 19) of one bimorph cantilever beam. 

3.4 Finite Element Modeling 

For the computer-aided actuator modeling portion of this research, the actuator 

dimensions were as follows: 1.5 µm-thick polysilicon (Poly2) beams measuring 30 µm 

wide x 500 µm long; 10 µm wide x 20 µm long secondary anchors; and 0.5 µm thick x 

24 µm wide gold bimorph layer. These were the maximum allowable dimensions, as 

suggested by the PolyMUMPs™ design rules [75] and established initial design 

constraints. Figure 26 shows three example 3-beam partial-bimorph configurations 

modeled in this research. 
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Figure 26: 3-beam polysilicon/gold bimorph zipper actuator designs: (a) full length gold, 
(b) one third length gold, centered on beam, (c) varied length gold located at bottom of 
beams. 

 

There were three phases to the modeling of the designs. For all phases, static 

modeling of designs were conducted using MEMS specific CoventorWare® software and 

captured the total deflection obtained by each actuator configuration, in order to 

determine the optimal bimorph cantilever beam configuration.  

During phase I of the modeling, the length and location of the metal layer were 

varied with respect to the underlying polysilicon beam. Research of similar designs found 

that bimorph layer lengths of approximately one-half the total length of the cantilever 

beam maximizes the end point deflection [76]. This was verified by modeling multiple 

lengths for comparison. Additionally, these different bimorph lengths were modeled at 

different locations on the polysilicon beam. This phase established the optimal bimorph 

geometry and partial-bimorph beam configuration, which produced the highest initial 

deflection in the actuator. 

(a)

(b)

(c)
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Phase II of the modeling varied the number of beams in the actuator and the 

material stress in the bimorph layer. This phase characterized the effects additional beams 

have on the structure and also observed the effect on the system due to changing the 

bimorph material and/or deposition characteristics.  

Lastly, a space-saving design was evaluated along with modeling of a full micro-

mirror platform actuation assembly. For the space-saving design, beam widths and 

spacing widths were reduced and modeled in hopes of reducing the actuator footprint, 

thus allowing for additional beams to be added to the assembly without exceeding the 

maximum allotted space for the actuator. The full platform actuation assembly was 

modeled to ensure that the results for an individual actuator would hold true once 

incorporated into an actuation assembly. 

3.5 Device Fabrication 

As previously stated, prototype fabrication of these device designs was 

accomplished using PolyMUMPs™. Using this fabrication option greatly reduced the 

risks of failed fabrication processes and afforded three design fabrication opportunities 

during the time allotted for this research. Each fabrication run consisted of 15 copies of 

one 1 cm x 1 cm area of design space called a die site. MEMSCAP® required that each 

die site layout be designed using Tanner EDA’s L-Edit MEMS software.  

L-Edit MEMS layout editor software was created by Tanner EDA and designed 

specifically to simplify the difficult task of preparing a design layout for fabrication. 

Figure 27 shows the L-Edit design layout for the third and final 1 cm x 1 cm die site, on 

the left. On the right is an SEM image of a full die site with fabricated devices released  
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Figure 27: Full 1 cm x 1 cm die site: (Left)  L-Edit Layout ready to submit for device 
fabrication; (Right) is a SEM image of a die site fabricated in PolyMUMPs®with devices 
released for testing 

 

for testing. The die site layouts were segmented into quarters, by dicing lane. Each 

quarter had enough space for a 4 x 4 array of devices or 16 individual devices. This 

allowed the option to dice it into smaller pieces in the event only a few assemblies needed 

to be released and tested. Otherwise all the devices would be released and the unused 

devices would then be wasted. Figure 28 shows an L-Edit design for an individual micro-

mirror platform actuation assembly (shown in Figure 27) with 7-beam “zipper” actuators 

developed for this research. Each quadrant contains four breached nitride grounding pads 

to easily ground assemblies for testing and a mix of individual micro-mirror platform 

actuation assemblies. Included among the three design layouts were assemblies driven by 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 22 beam “zipper” actuators.  
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Figure 28: L-Edit layout of a micro-mirror platform assembly with four 7-beam "zipper" 
actuators 

 

Even with duplicate copies of the modeled device configurations above, there was 

still space available on the die. To take advantage of this remaining space a couple un-

conventional design ideas were fabricated. Those devices were deemed ‘corrugated’ 

beam designs. These designs attempted to reduce the rigidity of the partial-bimorph 

beams mechanically in the actuation plane, to produce greater initial deflections and/or 

reduce actuation voltages. There were two corrugated design fabricated for comparison to 

the original (modeled) designs. Figure 29 shows cross-sectional views of both corrugated 

designs that were fabricated using PolyMUMPs®.  

Corrugated design 1, Figure 29(a), replaced the solid POLY2 layer of the original 

partial-bimorph beam design with alternating POLY1/POLY2 layers. These segments 

maintained the same beam width as the original designs, with lengths of 15 µm. This 

allowed for a 5 µm overlapped, bonded with a POLY1/POLY2/VIA, and a 5 µm gap.   
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Corrugated design 2, Figure 29(b), took a much different approach. Using the 

conformal nature of the PolyMUMPs® fabrication process, a wave in the solid POLY2 

layer was created. This was accomplished by strategically placing 15 µm gaps between 

15 µm segments of the POLY0 layer being used as the electrode.     

  

Figure 29: Cross-section views of corrugated partial-bimorph beam designs: (a) 
corrugated design 1, stacked POLY1 and POLY2 layers bonded with 
POLY1/POLY2/VIA layer; (b) corrugated design 2, conformal POLY2 

 

3.5.1 Post Fabrication Processing (Post-Processing) 

The post-process fabrication of these devices were conducted in two class 100 

cleanrooms located at AFIT and AFRL’s Sensor Directorate, on Wright-Patterson Air 

Force Base, Ohio.  

Understanding and accepting the limitations of the PolyMUMPs® fabrication, this 

research explored the post-processing of the devices in an effort to increase device 

performance. For this, procedures were developed to examine different bimorph layers, 

which would induce higher stresses into the system and produce greater initial deflections 

in the “zipper” actuators. Choosing materials with higher CTEs than the gold layer and/or 
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Metal
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depositing the bimorph material at a higher deposition temperature than that used by 

MEMSCAP® induces additional stress into the system, thus producing higher initial 

deflections. After post-processing, devices were then release for comparison to 

unmodified devices.  

Post-fabrication processing activities were quite involved and included 

photolithography, etching, evaporation, and sputtering. Background on these processes 

can be found in the photolithography and pattern transfer appendix, APPENDIX A and 

APPENDIX B respectively. Post-fabrication processing was accomplished by first 

creating mask sets for patterning. Then the PolyMUMPs® gold and chrome adhesion 

layers were removed to allow the deposition of new partial-bimorph layer with different 

materials and/or deposition methods.  Figure 30 shows a micro-mirror platform assembly,  

 
Figure 30: Optical image of a single-beam electrostatic partial-bimorph actuator in the 
midst of post-fabrication processing 

 

electrostatically driven by four single-beam partial-bimorph actuators, in the midst of 

post-fabrication processing procedures. At this point, the device seen in Figure 30 has the 

Micromirror 
Platform

Developed Photoresist



 

54 

PolyMUMPs® gold and chrome layers removed and a layer of photoresist applied, 

masked, exposed, and developed. The brighter portion of the beams indicates the 

developed area of photoresist, ready for metal evaporative deposition. For this portion of 

the research, devices were post-processed with bimorph material layers of gold (Au) and 

aluminum (Al), 0.5 µm thick, using both evaporative and sputtering deposition 

techniques at temperatures of 100º C and 125º C. The process followers for those 

procedures are contained in APPENDIX C and APPENDIX D respectively. 

3.6 Tools and Equipment 

Other than device fabrication conducted through PolyMUMPs® and at AFRL 

facilities, all device fabrication, characterization, and testing were conducted in AFIT’s 

Cleanroom and Device Characterization Lab. For this there were four main pieces of 

equipment used: a Hitachi S-4700 SEM, used to image devices; a Micromanipulator 

probe station, used to optically observe device condition and actuation; Karl Suss MJB3 

Mask Aligner, used during the post-processing photolithography steps; and a 3D optical 

surface profiler, ZYGO® NewView™ 7300 white light interferometer, to measure initial 

device deflections as well as step measurements of devices as voltage was increased to 

the point of pull-in.  

The first two pieces of equipment were used throughout this research to provide 

visual verification of the device condition and provide the high quality imagery of the 

fabricated devices. The MJB3 mask aligner was exclusively used during the post-

fabrication portion of this research. This tool was used to align the pattern transfer masks 

to the existing device features and expose the photoresist layer to ultraviolet (UV) light. 
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The results of this process are clearly visible in Figure 30. The final piece of equipment 

used was by far the most important piece of equipment to this research. The ZYGO® 

NewView™ 7300 is an optical profiler uses reflected light to produce non-destructive, 

fast, and high-precision 3D measurements of devices. It can be used for characterizing 

surface roughness, step heights, critical dimensions (i.e. slopes), and topographical 

features covering heights ranging from less than 1 nm to 20,000 µm [77].    

3.7 Device Characterization and Testing 

Fabricated devices were evaluated in two parts, using the ZYGO NewView™ 

7300 series white light interferometer. First the initial deflections for devices were 

characterized, recording initial deflection height measurements for all secondary anchors  

 
Figure 31: Screenshot of ZYGO white light interferometer measurement for the initial 
deflection (0 V) of a micro-mirror platform actuation assembly, actuated by four 22-beam 
“zipper” actuators 

 

and their associated micro-mirror platforms. Four of each “zipper’ actuator configuration 

measured during the device characterization portion of this research. Figure 31 is a 
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screenshot of a measurement taken of an un-energized micro-mirror platform actuation 

assembly with four 22-beam “zipper” actuators.  The top left image in the screenshot 

shows a top-down view (measurement angle) of the device and the line segments 

indicating the physical locations for the measurements indicated in the lower left image. 

The image on the top right is a 3D rendering (model) of the measurements taken in the 

top left image. Note that it shows solid columns under the individual partial-bimorph 

cantilever beams; this is because the measurement is taken from directly above the 

devices and when the model is generated it assumes a solid structure. Figure 32 is a SEM 

image of a released micro-mirror platform assembly actuated by four 8-beam "zipper" 

actuators, showing the air gap under the “zipper” actuators. 

In addition to the device characterization conducted in this research, the devices 

were also operationally tested. The purpose for this testing was to evaluate the pull-in 

voltage requirements of the “zipper” actuator assemblies. The procedures for this were 

very similar to those conducted in the device characterization phase. The difference being 

that the steps previously described were repeated numerous times for each actuator 

tested. During device testing, two samples of each “zipper’ actuator assemblies were 

tested. A power supply was used to apply a voltage difference between the polysilicon 

layer of the structure (grounded) and a polysilicon electrode (voltage). Under the optics  
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Figure 32: SEM image of a released micro-mirror platform assembly actuated by four 8-
beam "zipper" actuators 

 

of the ZYGO NewView™ 7300 probes were placed on the probe pads (Figure 32) and 

the grounding pads (Figure 27). Then a voltage was applied (0v, 10v, 15v, 18v, 19v, and 

20v) terminating once the device achieved pull-in. At each voltage step a ZYGO 

measurement was taken, recording the same data points as used in the device 

characterization. Additionally, Platform deflections were taken on the actuation side and 

the side opposite of the actuation to capture platform tilt. 

3.8 Summary 

This chapter detailed the design approach, modeling, device fabrication, post- 

fabrication processing, tools and equipment, and characterization and testing 

methodologies used in this research. The following chapters will present the data results 

collected during the evaluation of this unique design as well as the analysis of that data. 
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4. DATA  

4.1 Chapter Overview 

Previous chapters provided background, discussing fabrication techniques and 

device characterization methods used to evaluate the “zipper” actuator design introduced 

in this research. In this chapter, the analytical modeling, finite element modeling, device 

characterization/testing, and post-fabrication processing results are presented. The 

analytical modeling provide calculated results for the expected initial beam deflections 

and voltages required for pull-in of a single partial-bimorph cantilever beam, while finite 

element modeling evaluated the expected initial deflections of “zipper” actuators 

constructed from multiple partial-bimorph cantilever beams. Device characterization and 

testing provided measured results for the initial deflections and pull-in voltage 

requirements of the PolyMUMPs® fabricated micro-mirror platform assemblies. Post-

fabrication processing results provided an evaluation of the evaporative and sputtering 

post-processing efforts conducted on the PolyMUMPs® fabricated devices. 

4.1 Analytical Modeling Results 

The analytical modeling results presented in this section were obtained using the 

methodologies explained in the previous chapter (Section 3.3). For this modeling, there 

were two variables which needed to be evaluated. First was the length of the metal 

bimorph segment to be used on the modeled partial-bimorph cantilever beam. For this, 

the bimorph segment was modeled at lengths from 100 µm to 450 µm, in increments of 

50 µm, and 496 µm (to avoid multiplying by zero). The second variable was the change 

in temperature (deposition to room temperature). Although it is known that 
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PolyMUMPs® depositions are conducted at low temperatures, those deposition 

temperatures are not publicized and would inevitably vary from process to process. For 

this reason the change in temperature, ΔT in Equation 24, was also varied. All partial-

bimorph cantilever configurations were modeled at 10º C, 50º C, 100º C, 150º C, 200º C, 

and 250º C. 

4.1.1 Partial-Bimorph Cantilever Beam Initial Deflections 

Below is one example of the analytical initial deflection modeling results 

calculated. For this modeling, initial deflections of nine partial-bimorph beam 

configuration were calculated with respect to six different changes in temperature. Table 

1 shows the resulting initial deflection calculations for beams fabricated at 150º C above 

room temperature. The bimorph column indicates the length of the bimorph segment 

while the non-bimorph column indicates the remaining portion of the cantilever beam.  

Table 1: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 150º C 

 

Notice the final bimorph segment length is not the full length of the beam. This is 

because PolyMUMPs® design rules suggest a minimum of 3 µm between the metal layer 

and the edge of the beam and also to avoid multiplying by zero (Equation 25) when l2 is 

d ₁ d ₂ Δd₁
3.56E-06 2.35E-05 2.70E-05
8.01E-06 3.08E-05 3.88E-05
1.42E-05 3.52E-05 4.94E-05
2.23E-05 3.66E-05 5.88E-05
3.20E-05 3.51E-05 6.71E-05
4.36E-05 3.06E-05 7.42E-05
5.70E-05 2.33E-05 8.02E-05
7.21E-05 1.31E-05 8.52E-05
8.76E-05 1.15E-06 8.87E-05

1.00E-04
Bimorph Non-Bimorph 

4.00E-04

4.50E-04

2.00E-04
1.50E-04
1.00E-04
5.00E-05

2.00E-04

4.00E-04

3.00E-04
3.50E-04

1.50E-04
3.00E-04
2.50E-042.50E-04

4.96E-04 4.00E-06

3.50E-04
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zero. Equation 24 was used to calculate the deflection on the bimorph segment, d1. The 

deflection associated with the non-bimorph segment, d2 was calculated using Equation 25 

and the processes discussed in Section 3.3.1. Those two deflections were then added to 

calculate the total initial deflection of the partial-bimorph cantilever beam. Figure 33 is a 

graph of the calculated initial deflections for partial-bimorph cantilever beams with a 

change in deposition temperature of 150º C.  This graph shows the total initial deflections  

 
Figure 33: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 150º C 

 

achieved by each of partial-bimorph cantilever beam configurations, as well as the 

amount of initial deflection associated with the two segments of that beam configuration. 

A full set of the analytical modeling results showing the initial deflection calculation for 

all nine beam configurations at six different temperatures is included in APPENDIX E.  
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4.1.2 Partial- Bimorph Cantilever Beam Pull-in Voltages 

Recall from the modeling methodology discussed in Section 3.3.2 that the non-

bimorph segment of the beam is to be ignored in this portion of the analytical modeling, 

given the assumptions that the non-bimorph segment of the beam was perfectly straight 

and would achieve pull-in once the bimorph segment exceeding its pull-in voltage. An 

example of the calculated pull-in voltage results for partial-bimorph cantilever beams 

fabricated at 150º C above room temperature is shown in Table 2. For this modeling, the 

same bimorph segment lengths were modeled at the temperatures used to model initial  

Table 2: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 150º C 

  

deflections. Additionally, Figure 34 is a graph of the data presented above, which shows 

the relationship between the bimorph segment length and the voltage required to  

Pull-in 
Voltage

38.7
31.3
31.1
33.2
30.3
39.9
43.8
47.9
51.8

Bimorph Segment       
Length (µm)

Modeled Segment Length 
(µm)

100 50
150 75
200 100
250 125
300 150

496 248

350 175
400 200
450 225
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Figure 34: Graph of calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 150º C 

 

pull-in the beams.  In this section, one-half the length of the bimorph segments at a height 

of one-half the deflection achieved by that bimorph segment was used to construct a basic 

cantilever beam model. From this, the required pull-in voltage was calculated using 

Equation 12 and the procedures discussed in Section 3.3.2.  This model produced voltage 

requirements from 10 V (10º C model) to more than 80 V (250º C model). A full set of 

the analytical modeling results showing the initial deflection calculation for all nine beam 

configurations at the six different temperatures is included in APPENDIX F. 

4.2 Finite Element Modeling Results 

Finite element modeling was conducted using CoventorWare® and ANSYS 

Multi-Physics modeling software, to evaluate different partial-bimorph cantilever beam 

geometries and configurations effects on the operation of the “zipper” designs used to 

actuate micro-mirror platforms. The FEM guided the evolution of this design and 
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consisted of three modeling phases, which culminated in the optimized design fabrication 

using PolyMUMPs®.   

4.2.1  Initial Deflection Modeling Using CoventorWare® 

In this portion of the research CoventorWare® software was used to model the 

initial deflection behavior of stacked partial-bimorph cantilever beams.  Design 

geometries and configurations were varied over three phases in order to optimize the 

design prior to fabrication. 

Phase 1 of FEM began with the predetermined materials and geometries discussed 

in Section 3.4 and inputs determined by the commercial fabrication process and AFRL 

compatibility requirements. Recall that this initial design focused the FEM on optimizing 

the bimorph layer length and location to optimize actuator deflections. For this, bimorph 

layer lengths of 150 µm, 250 µm, and 500 µm were modeled at the bottoms, centers, and 

tops of all cantilever beams in the actuator. FEM quickly eliminated center and top 

bimorph segment locations as viable options. Figure 35 shows a 3-beam “zipper” actuator 

with 250-µm-long bimorph segments oriented at the center of the cantilever beams. This 

configuration produced a maximum deflection of 14 µm, observed at secondary anchor 1 

and the end of beam three. Beam two actually produced a deflection of – 14 µm, 

returning secondary anchor 2 to the starting height at the primary anchor. This allows 

beam three to produce the same deflection as beam one. Similar results were observed 

with the 150-µm and 500-µm-long bimorph layers centered on the cantilever beams; the 

only difference being the maximum deflections obtained. 
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Figure 35: CoventorWare® simulation of a 3-beam “zipper” actuator with 250-µm-long 
gold bimorph segments centered on cantilever beams 

 

When the bimorph layer was modeled at the bottom of each beam in the actuator 

the results are much more promising, seen in Figure 36 and Figure 37.  This 

configuration resulted in a maximum actuator deflection more than double that of the first 

models, clearly visible in the 3D image, seen in Figure 36. Not only did this configuration 

of the partial-bimorph beam add an additional.6 µm deflection to the first beam, but the 

actuator also zipped open, producing a greater maximum deflection in the actuator. A 20 

µm deflection was observed at secondary anchor 1. A deflection of 14 µm (- 6 µm in the 

actuator) was observed at secondary anchor 2. With an additional 19 µm added by the 

final partial-bimorph beam to produce a total actuator deflection of 33 µm, observed at 

the end of beam three.  The graph in Figure 37 shows the deflection gain at secondary  
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Figure 36: CoventorWare® simulation of a 3-beam “zipper” actuator with 250-µm-long 
gold bimorph segments located at the bottom of the cantilever beams, 3D deformation 
model 

 

 

 
Figure 37: CoventorWare® simulation of a 3-beam “zipper” actuator with 250-µm-long 
gold bimorph segments located at the bottom of the cantilever beams, graph of 
deflections at each secondary anchor and end of the last partial-bimorph cantilever beam 

 

1 ≈ 20µm

3 ≈ 33µm

2 ≈  14µm
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anchor 1, loss at secondary anchor 2, and gain at the end of beam three. Similar results 

were observed in the model with 150 µm bimorph segments in this configuration, again 

the difference being a reduction in the maximum actuator deflection. There was no need 

to model the 500 µm bimorph segments in this configuration as this would produce the 

same results as the center configured models. 

In an effort to overcome the negative deflection observed between secondary 

anchor 1 and secondary anchor 2, the “zipper” actuator assembly was modeled with 

varied lengths of bimorph segments. Starting with the smallest bimorph segment on beam 

one and getting progressively longer on each subsequent beam, shown in Figure 38 and 

Figure 39. Figure 39 shows a deflection gain at secondary anchor 1, a gain at secondary 

 

Figure 38: CoventorWare® simulation a 3-beam “zipper” actuator with varied length 
gold bimorph segments (150µm, 225µm, and 300µm) located at the bottom of the 
cantilever beams, 3D deformation model 

 

1 ≈ 15µm
2 ≈ 17µm 

3 ≈ 31µm
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anchor 2, and a gain at the end of beam three. While this approach did indeed overcome 

the negative deflection observed in beam two of the previous models, it also resulted in 

less maximum deflection for the actuator. This reduction in initial deflections coupled 

with the fact that the optimal bimorph segment lengths have to be recalculated each time 

a partial-bimorph beam is added to the actuator makes this solution impracticable for this 

application. Similar results were observed in other varied length configurations, none of 

which produced greater deflections than those observed in previous models.  

 
Figure 39: CoventorWare® simulation a 3-beam “zipper” actuator with varied length 
gold bimorph segments (150µm, 225µm, and 300µm) located at the bottom of the 
cantilever beams, graph of deflections at each secondary anchor and end of the last 
partial-bimorph cantilever beam 

 

As a result of the findings in FEM phase I, it was determined that the “zipper” 

actuator design with 250-µm-long bimorph segments located at the bottom of the 

cantilever beams was the best design to meet the unique needs of this research. 
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Phase II FEM examined the effect adding additional partial-bimorph cantilever 

beams has on the “zipper” actuator assembly. Additionally, an aluminum bimorph 

material with a higher coefficient of thermal expansion was modeled to observe the 

impact on the maximum initial deflection of the actuator. For modeling of actuators with 

gold bimorph segments, 4-beam, 5-beam (Figure 40 and Figure 41), 7-beam and 10-beam 

(Figure 42 and Figure 43) actuator configurations were modeled. Actuator configurations 

with gold bimorph segments produced approximately 14 µm of deflection per pair of 

partial-bimorph cantilever beams. Odd numbered beams added approximately 20 µm  

 
Figure 40: CoventorWare® simulation of a 5-beam “zipper” actuator with 250-µm-long 
gold bimorph segments located at the bottom of the cantilever beams: (Left) 3D 
deformation model 

 

deflection, while even numbered beams subtracted approximately 6 µm from the total 

actuator deflection. Figure 40 shows the 3D deformation model and Figure 41 the graph 

of the modeled initial deflection measurements for a 5-beam “zipper” actuator with gold 

2 ≈ 14µm1 ≈ 20µm

4 ≈ 27µm3 ≈ 34µm

5 ≈ 47µm
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partial-bimorph cantilever beams. The deflection steps observed in this example were 

also reflected in the 4-beam, 7-beam, and 10-beam models with gold bimorph segments. 

 

Figure 41: CoventorWare® simulation of a 5-beam “zipper” actuator with 250-µm-long 
gold bimorph segments located at the bottom of the cantilever beams, graph of 
deflections at each secondary anchor and end of the last partial-bimorph cantilever beam 

 

 Next, these models were repeated for “zipper” actuators with aluminum partial-

bimorph cantilever beams. Figure 42 shows the 3D deformation model and Figure 43 

shows the graph of the modeled initial deflection measurements for a 10-beam “zipper” 

actuator with aluminum partial-bimorph cantilever beams. This example shows how 

these devices produce approximately 18 µm of deflection per pair. The “zipper’ actuators  
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Figure 42: CoventorWare® simulation of a 10-beam “zipper” actuator with 250-µm-long 
aluminum bimorph segments located at the bottom of the cantilever beams, 3D 
deformation model 

 

 
Figure 43: CoventorWare® simulation of a 10-beam “zipper” actuator with 250-µm-long 
aluminum bimorph segments located at the bottom of the cantilever beams, graph of 
deflections at each secondary anchor and end of the last partial-bimorph cantilever beam 
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modeled with aluminum partial-bimorph cantilever beams produced a gain of 

approximately 25 µm in deflection for every odd numbered beam and a loss of 

approximately 7 µm in the even numbered beams. Table 3 gives modeled deflections 

measured at each secondary anchor and the last partial-bimorph cantilever for the 

actuators seen in Figure 41 and Figure 42/Figure 43. 

 

Table 3: Modeled initial deflections results for a 5-beam "zipper" actuator with gold 
bimorph segments and a 10-beam "zipper" actuator with aluminum bimorph segments 
 

   

  Combined, they highlight that each odd numbered beam produces a net gain in the 

actuator, while even numbered beams produce a net loss. This phase verified that the 

“zipper” actuation scheme continues to add deflection as additional beam pairs are added 

and identified a predictable pattern which can be exploited. Given that each pair of beams 

adds additional deflection to the system, the number of beams needed to reach specific 

Actuator
Design 

Deflection
(µm)
+20
-6

+20
-7

+20
+25
-7

+25
-7

+24
-10
+25
-7

+25
-810

5-Beams

10-Beam

**47**
(~14 per pair

**93**
(~18 per pair)

4
5
6
7
8

**9**

3
4

**5**
1
2
3

Secondary 
Anchors

Max Actuator 
Delfection (µm)

1
2
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design criteria is easily determined. It also showed that materials with different CTEs 

(bimorph material) will produce different deflection, yet follow the same step pattern. 

Phase III of the FEM also had two parts. First, a “zipper” actuator design with 

smaller partial-bimorph cantilever beam widths and spacing was examined, to increase 

the number of pairs of beams which can fit in the available space. Figure 45 shows the 

modeling results for a 5-beam “zipper” actuator with gold bimorph segments widths 

reduced from 24 µm to 16 µm, partial-bimorph cantilever beam widths reduced from 30 

µm to 20 µm, and the spacing between beams reduced from 20 µm to 10 µm. This minor 

adjustment to the geometry reduces the footprint of the actuator by 15 µm for each pair of 

 
Figure 44: CoventorWare® simulation of 5-beam “zipper” actuator with 250-µm-long 
gold bimorph segments located at the bottom of 20-µm-wide cantilever beams: (Left) 3D 
deformation model 

 

beams, with minimal loss of beam deflection. Actuators modeled with this new geometry 

produced approximately 12 µm of deflection for each pair of beams. When compared to 

3 ≈ 30µm

5 ≈ 43µm

1 ≈ 18µm

4 ≈ 24µm

2 ≈ 12µm
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the results seen Figure 41, this geometry produced a maximum deflection of 4 µm less 

(5-beam “zipper” actuators). For the second part of this phase, and final FEM modeling,  

 
Figure 45: CoventorWare® simulation of 5-beam “zipper” actuator with 250-µm-long 
gold bimorph segments located at the bottom of 20-µm-wide cantilever beams, graph of 
deflections at each secondary anchor and end of the last partial-bimorph cantilever beam 

 

micro-mirror platform assemblies were modeled with four 3-beam and four 4-beam 

“zipper” actuators to ensure the previous actuator modeling results held once the 

actuators are incorporated into a device. Figure 46 is a 3D static deformation model of a 

micro-mirror platform assembly driven by four 3-beam “zipper” actuators, resulting in 
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Figure 46: CoventorWare® simulation of four 3-beam “zipper” actuators with 250-µm-
long gold bimorph segments located at the bottom of cantilever beams, connected to a 
500 µm x 500 µm micro-mirror platform assembly 

 

a total initial deflection for the micro-mirror platform assembly of 29µm. When 

compared to the 3-beam actuator modeled in phase I, which had the wider partial-

bimorph cantilever beams, the result show that little-to-no deflection will be lost when 

the four actuators are connected to a micro-mirror platform. These results were also 

shared by the micro-mirror assembly modeled with four 4-beam actuators. 

 As a direct result of the FEM completed in this portion of the research, 3-beam 

through 12-beam and 22-beam “zipper” actuators, with reduced geometries, were 

submitted to MEMSCAP Inc. for fabrication using their PolyMUMPs® process. 

4.2.2 Initial Deflection Modeling Using ANSYS 

The purpose for this portion of the research was to evaluate ANSYS Multi-

physics software for possible implementation in the AFIT MEMS Lab because its 

relatively low academic licensing cost may make it a more effective tool for AFIT. As 
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this software is new to AFIT the goal for this modeling was to compare ANSYS results to   

those obtained using CoventorWare®.   

The first thing to be accomplished was the construction of a material database for 

the PolyMUMPs™ material layers. As ANSYS was originally designed to model the 

macro environment and has added its micro capabilities in recent years, thin film material 

properties have to be added to the model.  Figure 47 shows a screen capture of the Data 

Source library that was built for the PolyMUMPs™ specific material properties. Because   

 

Figure 47: Screen capture of ANSYS Engineering Data Source containing newly created 
PolyMUMPs Materials Data Source and outline of PolyMUMPs Data Source contents 

 

this model is to be compared with those in the previous section, the gold and polysilicon 

material property values used were the same as those in the CoventorWare® models. 
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Once this was done, the next step was to build the geometry file which consisted of the 

design to be modeled. This can be accomplished either by building (sketching) the design 

directly in the geometry module or by importing the design file from L-edit. Both are 

relatively straight forward but if the L-edit design file already exists it is much quicker to 

import the design. Figure 48 is a screen capture of the 5-beam actuator design, which was  

 
Figure 48: Screen capture of 5-beam “zipper” actuator geometry in ANSYS, imported 
from L-edit design file using MEMS Pro 3D Modeler  

 

imported from L-edit. To accomplish this, a 3D model is built in L-edit, using the MEMS 

Pro tool bar. That 3D model is exported as a *.sat file and saved. The saved file was then 

imported into the geometry module of the ANSYS file. After the design is in the 

geometry module all the layers can be renamed and material properties assigned. Next the 

model was meshed in preparation for simulation. Figure 49 shows a screen capture of the 

5-beam design after it had been meshed.  
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Figure 49: Screen capture of Meshed 5-Beam “zipper” actuator geometry in ANSYS 

 

This was the extent of the results of this portion of the research. Recall that the 

purpose for this model was to determine the expected initial deflections resulting from 

the stresses introduced by the stacked partial-bimorph. Where CoventorWare® 

automatically accounts for this internal stress ANSYS does not. It required the types of 

forces affecting the model be set within the model. Unsure of what settings to use, I 

contacted ANSYS support but was still unable to resolve this issue during the course of 

this research. While a full design simulation using ANSYS was not accomplished, this 

research did make headway toward reaching that goal.  
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4.3 Characterization and Testing Results 

Device characterizations and testing began immediately upon the receipt of the 

PolyMUMPs® fabricated devices.  Figure 50 is an SEM image of a fabricated micro-

mirror platform assembly driven by four 7-beam “zipper” actuators. It clearly shows how  

 
Figure 50: Scanning Electron Microscope (SEM) image of four 7-beam “zipper” 
actuators with 250-µm-long gold bimorph segments located at the bottom of cantilever 
beams, connected to a 500 µm x 500 µm micro-mirror platform assembly 

 

each pair of beams produce additional positive deflection in the assembly..In this portion 

of the research, initial deflection characterization and required pull-in voltage testing of 

the fabricated devices were conducted using a ZYGO® NewView™ 7300 3D optical 

white light interferometer, following the procedures outlined in Section 3.7.         

4.3.1 Initial Deflection Characterizations  

For the device characterization portion of this research, static initial deflections of 

all actuator configurations (four of each) were measured at all secondary anchors and the 

platform/last cantilever beam.  Table 4 contains the measured initial deflection results for 

Probe
Pad

Primary
Anchor

Micromirror 
Platform

“Zipper” 
Actuators

Secondary
Anchor 1 Electrodes
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four 5-beam “zipper” actuators. The first four columns each represent an individual 

actuator, while the rows provide the location of the measurement. The last column of the  

Table 4: Measured initial deflection results for PolyMUMPs® fabricated, 5-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 

table is an average measurement for the deflection height of that location, taken across 

the four measured actuators, showing an average maximum deflection of approximately 

43 µm. This set of data was unusual because the measurements showed a net positive  

 
Figure 51: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
5-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

deflection added to the system at each secondary anchor, contrary to the FEM results. 

This can also be seen in Figure 51, which shows a graphical representation of the average 

 Average 
Deflection

1 21.7 21.5 24.8 23.7 22.93
2 23.3 23.5 26 25.8 24.65
3 31.7 31.5 35 34.1 33.08
4 42 43.2 47 46.9 44.78
5 42.2 40.8 45.3 45.3 43.40
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deflections measured. It is important to note that all four actuators showed this, and that 

the only other actuator configurations to demonstrate this unexpected deflection profile 

were the 3-beam actuator and the corrugated design configurations. Table 5 and Figure 

52 show the measured initial deflections for the 10-beam “zipper actuators. This 

measured data set is more representative of the remaining data collected in this portion of 

the research and closely agrees with the expected deflection of the system, as predicted 

during the FEM of this research. There are net positive deflections measured at all odd 

numbered secondary anchors, while there are net negative deflections measured at all  

 Table 5: Measured initial deflection results for PolyMUMPs® fabricated, 10-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 

 

even numbered secondary anchors. This device produced an average maximum 

deflection measured to be approximately 76 µm. 

 Average 
Deflection

1 25 23.8 23.7 24.1 24.15
2 19.4 20 20.1 20.5 20.00
3 37.4 36.7 36.9 36.7 36.93
4 34.2 34.3 36.1 36.1 35.18
5 51 51.2 51.2 51.3 51.18
6 50 48.3 50.7 50.7 49.93
7 66.3 65.2 66.4 66 65.98
8 62 61.3 64.5 64.3 63.03
9 82.2 81.1 83.1 82.9 82.33
10 76 76.1 76.7 76.6 76.35
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Figure 52: Graph of measured initial deflection results for PolyMUMPs® fabricated,   
10-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

The most impressive example of this trend is observed in the 22-beam micro-

mirror platform assembly, presented in Table 6 and Figure 53. While all the devices 

characterized in this portion of the research (excluding the 3-beam, 5-beam, and 

corrugated beam devices previously discussed) responded this way, significant variations 

in deflections did occur. Table 6 shows a maximum initial deflection difference of 

approximately 11 µm between the first two assemblies and the last two assemblies 

measured. This resulted in a range of maximum initial deflection from 165 µm to 176.3 

µm with an average maximum of nearly 171 µm. 
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Table 6: Measured initial deflection results for PolyMUMPs® fabricated, 22-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 

 

 
 Average 
Deflection

1 23.3 24.5 29.1 27.7 26.15
2 20.3 21.4 21.9 21.7 21.33
3 36.7 37.4 42.9 41.8 39.70
4 36.1 37.5 39.6 38.6 37.95
5 50.5 51.1 56.9 56 53.63
6 52.1 53.3 56.9 55 54.33
7 64.1 65.3 71.6 70.9 67.98
8 67.2 68.2 72.9 70.8 69.78
9 78.5 79.1 86.8 86.2 82.65

10 82.5 83.6 90.2 86.5 85.70
11 93 93.4 102.7 101.2 97.58
12 94.8 97.6 105.5 103.1 100.25
13 106.5 108.1 118.1 117.2 112.48
14 109.6 111.9 121.1 117.4 115.00
15 121.8 123.3 133.9 132.8 127.95
16 124.1 125.5 135.4 132.9 129.48
17 137.4 138.5 150 149.8 143.93
18 138 139.2 150.3 147.1 143.65
19 152.8 154.5 166.1 166.9 160.08
20 151.7 152.6 164.8 161.8 157.73
21 169.2 170 182.9 184.1 176.55
22 165 165.8 176.3 176.2 170.83
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Figure 53: Graph of measured initial deflection results for PolyMUMPs® fabricated,   
22-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

In addition to the modeled designs there were “corrugated” designs fabricated, 

seen in Figure 29. Unfortunately, none of the corrugated design 1 devices (stacked 

POLY1/POLY2 layers) survived the release process. Figure 54 shows 

POLY1/POLY2/VIA stacked beam fragments (corrugated design 1). Each time a set of 

devices were released, all corrugated design 1 devices were destroyed. The fragmentation  
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Figure 54: SEM image of released POLY1/POLY2 stacked beam fragments atop an 
adjacent device 

 

deposited debris across every other device. Figure 55 clearly shows the debris field 

produced by the disintegration of the corrugated design 1 beam. All devices released with 

this beam configuration had fragments of POLY1/POLY2 beams on them, which 

interfered with the release and/or operation of those devices. For this reason, these 

devices were removed from the final fabrication run. Corrugated design 2 devices 

however did not experience the same reaction. This is also observed in Figure 55.  The 

corrugated design 1 device (bottom right) is missing, fragmenting into small pieces of 

debris, while the device with corrugated design 2 (top right) is released and fully intact.   
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Figure 55: Optical microscope image of debris field from released POLY1/POLY2 
stacked beam devices  

 

Initial deflection characterizations were also conducted for devices with 5-beam, 

7-beam, 9-beam, and 11-beam corrugated design 2 partial-bimorph cantilever beams. 

Table 7 and Figure 56 show the 11-beam corrugated design 2 measured initial deflection 

data and graph respectfully. This design produced an average maximum initial deflection 

of approximately 88 µm. Also it illustrates that this device also experienced a net positive 

deflection gain at almost all secondary anchors and a loss of deflection at the end of the 

final beam/platform. This unexpected result was also shared by the other fabricated 

corrugated device configurations measured. Additionally, all corrugated designs averaged 

maximum deflection results were very close to those measured for their flat counterparts. 

The largest difference being 5µm, observed between the 11-beam device configurations.  
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Table 7: Measured initial deflection results for PolyMUMPs® fabricated, corrugated      
11-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with a 250 µm 
bimorph segments 

 

 
Figure 56: Graph of measured initial deflection results for PolyMUMPs® fabricated, 
corrugated 11-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 
250 µm bimorph segments 

 

A full set of the characterization results showing the initial deflections measured for the 

different “zipper” actuator configurations is included in APPENDIX G. 

 Average 
Corrugated 
Deflection

1 26.7 24.1 24.8 25.9 25.38
2 24.1 22 23.6 23.6 23.33
3 39 37.8 37.2 39.4 38.35
4 42 38.4 41.3 41.7 40.85
5 51.1 46.5 50 52.6 50.05
6 59.2 55.3 57.3 59.9 57.93
7 63.4 58.9 64.2 65.4 62.98
8 74.7 71.8 76.1 75.8 74.60
9 74.7 71.7 77.4 77.9 75.43

10 91.4 86.5 93.3 94.2 91.35
11 87.5 85 89.3 90.1 87.98
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4.3.2  Pull-in Voltage Testing 

Pull-in voltage testing proved to be very difficult. There were two major 

challenges to overcome. The first issue encountered was that AFIT’s ZYGO® 

NewView™ 7300 was not set up to measure an actuated device (applied power). To 

overcome this challenge a vacuum chuck for the NewView™ 7300 table was fabricated 

and a power generation station, using portable probes, was set up. The second issue 

encountered was due to the layout of the design. When working in this confined space it 

was clear that these devices are too close together. Figure 57 is an SEM of a full set of 

devices released for testing. It shows an example of the largest area of devices which can  

 
Figure 57: SEM image of a full PolyMUMPs® fabricated die site released for testing 

 

be measured at any given time, the circle representing the optical view window. The 

issue being the space needed to allow for freedom of movement of the probes, within 
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that viewing area. A probe needed to be placed on a ground pad and one on the probe 

pad of the actuator to be tested. While this was not too difficult for devices close to the 

ground pad (bottom left of circle) it became increasingly more difficult the further the 

test device was from the ground pad (top right of circle). 

Additionally, the deflections of surrounding devices also posed an issue. At times, 

they inadvertently made contact with the probe and shorted the devices. To overcome 

this, micro-mirror assemblies were strategically and very carefully removed to allow 

adequate space for probe movement. Even after this extreme measure, there were four 

devices which were not fully tested. The 11-beam flat configuration and the corrugated 

5-beam and 9-beam configurations were positioned in areas which could not be tested. 

Additionally, only a single 10-beam configuration was tested because of the difficult 

locations. For all other device configurations, a minimum of two actuators were tested. 

With the exceptions of the 3-beam, 4-beam and 5-beam “zipper” actuator 

configurations, most of the devices tested achieved pull-in between 18 V and 20 V.  One 

7-beam and one 9-beam actuator achieved pull-in at 15 V and one 11-beam actuator 

required 25 V to pull-in. Table 8 shows the measured test data collected during the test 

of two 12-beam assemblies. Each data point collected reflects the deflection height of a 

secondary anchor, the last beam, the actuation side of the platform (PFa), and the side of 

the platform opposite the actuation (PFo) for each step in applied voltage. Figure 58 is a 

graphical representation of the actuator deflection data seen in Table 8(b). It shows how 

the actuator experienced little pull-in until 18 V, then snapped down at 19 V. This 

example was unique from most of the other tests. Additional pull-in was achieved by 
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Table 8: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 12-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 

 

increasing voltage. In most cases the addition of additional voltage (up to 10v) either 

caused the platform to snap down (short) or had no effect on the pull-in. 

  
Figure 58: Graph of measured deflection results for pull-in test of PolyMUMPs® 
fabricated micro-mirror platform assembly 2, with 12-beam “zipper” actuator deflections 
measured at each secondary anchor 

 

Figure 59 is a graphical representation of the platform deflection data seen in Table 8(b). 

It shows the tilt actuation of the platform. Notice that the side opposite the actuation 

1 2 3 4 5 6 7 8 9 10 11 12 PFa PFo
0v 21.6 19.5 34.3 33.7 47.9 47.2 60.8 60.4 75.4 73.1 90.0 83.8 84.5 84.9
10v 20.7 18.5 32.8 31.6 45.8 45.2 59.2 58.3 73.7 71.1 88.9 82.8 83.7 84.9
15v 19.4 15.7 30.7 29.0 43.6 42.8 57.6 56.2 72.1 69.7 87.8 81.9 82.6 84.1
19v 3.8 3.8 3.4 3.8 3.4 3.8 14.9 15.7 35.3 33.8 57.8 53.2 55.4 75.2
20v 3.5 3.7 3.8 3.9 3.8 3.5 14.4 14.6 34.6 32.8 56.6 53.6 56.1 75.4

0v 21.7 19.7 33.7 33.2 46.8 47.5 60.2 59.8 74.5 72.5 90.2 85.2 84.3 84.4
10v 20.8 18.3 32.0 32.0 44.8 45.6 58.0 58.7 72.2 70.6 87.7 82.5 82.6 84.4
15v 19.5 15.5 30.0 28.8 42.7 42.4 56.1 55.6 70.9 68.3 86.6 81.6 82.3 83.9
18v 4.8 4.4 3.7 11.5 16.1 22.7 33.7 36.9 52.2 51.7 72.2 66.7 68.9 80.2
19v 3.9 3.7 3.7 3.7 3.9 3.8 3.9 3.5 23.3 23.5 47.9 42.2 45.0 71.9
20v 3.5 3.3 3.8 3.3 3.9 3.2 4.0 3.1 3.8 16.1 36.4 33.8 42.6 68.9

(a)

(b)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

D
ef

le
ct

io
ns

 (µ
m

)

Secondary Anchors

0v
10v
15v
18v
19v
20v



 

90 

experienced a little pull-in as the actuator pulls down and with a large drop at pull-in. 

While the different actuator configurations tended to produce similar profiles, the  

  
Figure 59: Graph of measured deflection results for pull-in test of PolyMUMPs® 
fabricated 12-beam micro-mirror platform assembly 2, with micro-mirror platform 
deflection, measured on actuation side (PFa) and side opposite actuation (PFo) 

 

deflection differences seen between the two sides of the platform ranged from 0 µm to as 

much as 26 µm. As previously mentioned the 3-beam, 4-beam and 5-beam configurations 

did not achieve pull-in. Figure 60 and Figure 61  are graphs showing the measured pull-in 

data for a 4-beam actuator, also representative of the 3-beam configurations tested. These 

devices never achieved full pull-in (up to 10 V). While the actuators are seen to have had 

some pull-in, the platform did not achieve any significant tilt. This result was also seen in 

the 5-beam actuators test, except that in those cases the platform snapped in and shorted. 
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Figure 60: Graph of measured deflection results for pull-in test of PolyMUMPs® 
fabricated micro-mirror platform assembly 1; 4-beam “zipper” actuator deflections, 
measured at each secondary anchor  

 

 

  
Figure 61: Graphs of measured deflection results for pull-in test of PolyMUMPs® 
fabricated 4-beam micro-mirror platform assembly 1; micro-mirror platform deflection, 
measured on actuation side (PFa) and side opposite actuation (PFo) 
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4.4 Post-Fabrication Processing Results 

Working closely with AFRL researchers, two post-fabrication processing attempts 

were made during this portion of this research. Both attempts consisted of the same initial 

preparation of the devices which consisted of the removal of the PolyMUMPs® metal 

and adhesion layers.  

The first attempt used an evaporative deposition method. Figure 62 is an image of 

one of the many failed attempts at mask alignment. In this instance the photoresist layer 

was removed and the alignment re-accomplished. Once this channel of developed 

photoresist was properly aligned to within a couple microns, the devices were sent to 

AFRL for metallization. Two full dye sites were taken to AFRL at a time, one for gold 

 
Figure 62: Optical microscope image of a fabricated device during post-fabrication 
processing 

 

evaporation and one for aluminum evaporation, both at 120º C. Multiple attempts were 

made with the same outcome. For all the evaporated devices the lift off was perfect, 

however the resulting released devices were all less than desirable. All the devices with 

post-processed evaporated gold (seen in Figure 63) produced very little deflection. This is 
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clearly seen in the image because all the beams of the actuator are in the same focal 

range. If this 5-beam assembly had any significant deflection some of the beams would  

 
Figure 63: Optical microscope image of a release device, post-processed with evaporated 
gold bimorph segment 

 

be blurred. As for the aluminum results, they were even worse. None of the aluminum 

devices deflected at all.  

 The second post-fabrication processing attempt used sputter deposition. This 

deposition was also conducted at AFRL. This process differed in that the prepared 

devices were immediately sent to AFRL for metallization. The material was sputtered on, 

patterned and back etched, and then a protective layer of photoresist was applied prior to 

release.  Figure 64 shows a device with a protective layer of photoresist applied over the 

beams. Unfortunately, the results from this post-processing attempt were similar to the  
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Figure 64: Optical microscope image of a fabricated device in the midst of post-
fabrication processing 

 

previous attempts using evaporation. The device in Figure 65 shows one of the few 

instances where the sputtered bimorph segment survived the release of the device. In this 

example four of the sixteen bimorph segments can be seen. Three appear to still be 

 
Figure 65: Optical microscope image of a release device, post-processed with sputtered 
aluminum bimorph segment 

 

attached to the cantilever but one has clearly detached from the cantilever beam, leading 

to the conclusion that the other bimorph segments also detached and floated away. The 

Bimorph Segment
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results for the sputtered gold were also similar to those observed in the evaporative 

process, producing little to no deflection in the assemblies.  

4.5 Summary 

In this chapter, data results were presented for the evaluation of 15 “zipper” 

actuator design configurations introduced in this research.  Evaluations of these designs 

were conducted using analytical modeling, finite element modeling, and experimental 

characterization and testing. Additionally, results from post-fabrication processing 

attempts were discussed. 
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5. ANALYSIS 

5.1 Chapter Overview 

 In this chapter, data collected during the evaluation of the “zipper” actuator 

design and presented in the previous chapter is analyzed. Modeled and fabricated devices 

operations are discussed, unusual or unexpected observations are explained, and 

hypothesis as to the causes are provided.  

5.2 Analytical Modeling Analysis  

5.2.1 Initial Deflections 

Two factors were observed to affect the initial deflection during the evaluation of partial-

bimorph cantilever beams, the length of the bimorph segment and the temperature 

variation associated with material depositions. Figure 66 and Figure 67 show graphs for 

the calculated initial deflection data with a 50º C and a 250º C temperature changes 

respectively. A full set of calculated initial deflection data is located in APPENDIX E.  
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Figure 66: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments; a temperature change of 50º C, max 
deflection scale 0 µm 30 µm; 

 
Figure 67: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments; a temperature change of 250º C, max 
deflection scale 0 µm to 150 µm 
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There were a few results from this modeling that are relevant to this research. 

First, the calculated data verified that longer bimorph segments produce higher 

deflections in partial-bimorph cantilever beams and second, an increase in the deposition 

temperature will produce greater deflections in all bimorph segment lengths.  

Additionally, looking at the data across the six temperatures, the relationship between the 

bimorph segments with different lengths remains unchanged regardless of the deposition 

temperature. This proves post-fabrication processing is a viable operational improvement 

option for these devices.  

Another interesting observation was made once fabricated devices were received. 

The partial-bimorph cantilever beam with a 250 µm bimorph segments and a change in 

temperature of 50º C (seen in Table 9) produced a total deflection comparable to those  

Table 9: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 50º C 

   

measured from fabricated devices, approximately 20 µm. It shows that the likely 

PolyMUMPs® metal deposition occurred around 50º C above room temperature. 

d ₁ d ₂ Δd₁
1.19E-06 7.83E-06 9.02E-06
2.67E-06 1.03E-05 1.30E-05
4.75E-06 1.17E-05 1.65E-05
7.42E-06 1.22E-05 1.97E-05
1.07E-05 1.17E-05 2.24E-05
1.45E-05 1.03E-05 2.48E-05
1.90E-05 7.83E-06 2.68E-05
2.40E-05 4.40E-06 2.84E-05
2.92E-05 3.88E-07 2.96E-05

1.00E-04
Bimorph Non-Bimorph 

4.00E-04

4.50E-04

2.00E-04
1.50E-04
1.00E-04
5.00E-05

2.00E-04

4.00E-04

3.00E-04
3.50E-04

1.50E-04
3.00E-04
2.50E-042.50E-04

4.96E-04 4.00E-06

3.50E-04
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5.2.2 Pull-in Voltages 

The calculated pull-in voltage data was also affected by the bimorph segment 

length and the bimorph deposition temperature. The data graphs shown in  

Figure 68, Figure 69, and Figure 70 represent the voltage required to achieve pull-

in of partial-bimorph cantilever beams with changes in temperature of 10º C, 50º C, and 

250º C. As expected, bimorph layers deposited at lower temperatures require much less 

voltage to achieve pull-in. This is true for all but the smallest bimorph segments because 

cantilever beam stiffness is directly related to the length of the beam and this model used 

half of the  

 

Figure 68: Graphs of calculated pull-in voltages for a 500 µm partial-bimorph cantilever 

beam with varied bimorph segments, a temperature change of 10º C 
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Figure 69: Graphs of calculated pull-in voltages for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments, a temperature change of 50º C 

 

 
Figure 70: Graphs of calculated pull-in voltages for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments, a temperature change of 250º C 
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beams with longer bimorph segments. Like the analytical models for initial deflections, 

the data for a change in temperature of 50º C (shown in Figure 70(Middle)) matches the 

data measured from fabricated devices. Given the data calculated using a 10º C change in 

temperature is below that of fabricated devices, it was excluded from further analysis. 

The remaining data, available in APPENDIX F, shows a swing of 20 V (for bimorph 

segments between 150 µm and 300 µm) and 40 V – 60 V (for bimorph segments over 

300 µm) across the range of temperatures. Additionally, the partial-bimorph cantilever 

beams with bimorphs segment lengths of 250 µm and 300 µm experienced the smallest 

shift in required pull-in voltage across the range of temperatures.  

 All the modeling calculations point to an optimal bimorph segment length of 

between 250 µm and 300 µm. These lengths would allow for post-fabrication processing 

of devices with the least impact of pull-in voltage requirements. 

5.3 Finite Element Modeling Analysis  

5.3.1 Initial Deflection Using CoventorWare® 

Very early into the FEM it was apparent that the angle (relative to the substrate) 

produced by a deflected odd numbered partial-bimorph cantilever beam (observed at the 

end of the beam) had a direct effect on the deflection of the following beam. Because the 

end of the odd beam is connected to the start of the even beam (via a secondary anchor) 

the even beam must overcome its negative starting position (angle) to achieve a positive 

deflection. This was most evident in actuators with centered bimorph segments, like the 

example in Figure 35.  
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The most interesting finding in this modeling, and arguably most important, 

occurred once the bimorph segment was modeled at the bottom of the beam. In this 

configuration the actuator exhibited the desired “zipper” action and produced an 

interesting reaction in the even numbered beams. Although this beam produced a net 

negative deflection in the actuator, it brought secondary anchor nearly parallel to the 

substrate. This acted like a reset which proved vital to the “zipper” function of the 

actuator, enabling almost 75% of the deflection for odd numbered beams to add to the 

total deflection of the actuator. 

Actuators modeled with increasing bimorph segment lengths proved not to be the 

most optimal design for this research. While each beam yielded a net gain in deflection 

between its starting and ending points, the shorter bimorph segment lengths significantly 

reduce the actuator deflection. Additionally, none of the secondary anchors return to near 

parallel with the substrate, which required more bimorph segment length in subsequent 

beams to overcome ever increasing negative angles at the secondary anchors. Given that 

increasing bimorph segment lengths in an actuator produced less deflection and the 

complex recalculations required (optimal bimorph segment step size) when the number of 

beams actuator is changed this design approach was abandoned. All FEM modeling to 

this point confirmed that maximum deflection of this “zipper” actuator assembly is driven 

by the number of beams in that system.  

The final FEM examined an actuator design with smaller partial-cantilever beam 

geometries. This ‘space saving’ option reduced the space required for each pair of beams 

by 15 µm and produce 4 µm less of total system deflection. The additional 15 µm of 

space (per pair of beams) far outweighs the loss of less than 1µm of deflection per beam. 
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For every two beams in the actuator, the space saving adjustments allow for an additional 

beam to be added to the system without increasing the fill-factor. While this adjustment 

will reduce the maximum initial deflection by approximately 1 µm per beam, the addition 

of another (odd numbered) partial-bimorph beam adds approximately 19 µm to the 

system and each pair of beams adds approximately 12 µm. For this reason the ‘space 

saving’ geometries were fabricated. 

5.4 Characterization and Testing Analysis 

Due to the debris of fragmented devices with corrugated design 1, all device 

characterization and testing was performed on the third and final PolyMUMPs® 

fabrication run. Even with the additional POLY1/POLY2/VIA overlap on the second 

fabrication run, devices with corrugated design 1 actuators did not survive the release 

process. This is likely due to an inefficient VIA adhesion layer, which was not strong 

enough to withstand the stress introduced by the partial-bimorph cantilever beams. 

5.4.1 Initial Deflection Characterization 

Figure 71 is a graph showing a sample of the initial deflections of “zipper” 

actuators with 6-beam, 7-beam, 11-beam, 12-beam, and 22-beam configurations. It shows 

the linear step deflections of this design as well as an approximate 7 µm deflection gain 

per beam (14 µm per beam-pair). These observations match the results from the 

analytical and FEM modeling. Additionally, the R2 values for the data trendlines show 

that more beams in the actuator result in a more linear step deflections. It is also clear at 

which point this trend starts to break down. Devices with less than seven beams in the 

actuators produce significantly less desirable results. This is mainly due to the connection 
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at the platform. All devices produce less deflection in the beam attached to the platform. 

In actuators with few beams this is noticeable because that final beam deflection is a 

larger percentage of the total deflection. 

While on average, the initial deflections of all devices agreed with the modeled 

results, there was some noticeable variation in deflections of actuators with the same 

number of beams. It is well known that the slightest variations in deposition 

temperatures, pressures, humidity, and many other factors can affect the material 

properties and/or characteristics of the deposited material. This is the likely cause of these 

variations, given the fact that the 15 (1 cm x 1 cm) PolyMUMPs® fabricated die sites can 

be produce on as many wafers and use as many depositions per layer.  

 
Figure 71: Graph of average initial deflection characterizations for “zipper” actuators 
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When comparing the corrugated designs to their non-corrugated counterparts they 

produced 1 µm to 3 µm less deflection. While it is not significant, this is likely a result of 

the corrugation in the beam. As the bimorph material is also conformal, it is inducing 

different amounts of stress into the system base on its location on the wave. While the 

stress from on top of the wave helps the beam to curl upward, the stress from the bottom 

of the wave causes the beam to curl back downward and cancels some of the deflection. 

5.4.2 Pull-in Voltage Testing  

With the exception of a few tested actuators, the pull-in responses can be parsed 

into three categories. In all probability, the causes for the few outliners previously 

discussed were one or more of the following factors. There could have been something 

different in the fabrication of that device, it was damaged (either during release or during 

testing), or there could have been an oxide buildup on the device. All tests were 

conducted within 12 days of release to minimize the chance for oxide buildup, but it is 

still possible.  Based on the results presented for beams with more than five beams, 

actuators with this partial-bimorph cantilever geometry will achieve pull-in at/or below 

20 v. Although true, that did not translate to an equal amount of micro-mirror platform 

tilt across the range of “zipper” actuator configurations. Figure 72 shows the micro-

mirror deflection results to the second 22-beam actuator tested. This example shows the 

tilt experienced during actuator pull-in.  
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Figure 72: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 22-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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of the platform was not immediately apparent. This effect can most easily be observed in 

the test data graphs. Figure 73 shows the deflection results for a 10-beam actuator. All  

  
Figure 73: Graph of measured 10-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1, measured at each 
secondary anchor 
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5.5 Post-Fabrication Processing Analysis 

Despite best efforts to achieve greater deflections in post-processed devices, this 

portion of the research was not successful. There were two main contributing factors 

which hindered post-fabrication processing. It was discovered during the third post-

processing attempt that the evaporated aluminum bimorph layer was missing. As the 

aluminum and chrome adhesion layer are very similar in color it is not definite, but the 

likely cause for this is that the aluminum was inadvertently etched away.  While 

aluminum etches much slower in 49% hydrofluoric acid (HF) than the doped 

PolyMUMPs® sacrificial oxide layers, this design required a 15 minute release in HF 

because of the lack of etch holes in the platform (simulating a pillar/mirror assembly 

bonded to platform). This extended exposure to HF was sufficient to etch .5 µm of 

aluminum. Devices with evaporated gold bimorph layers results weren’t much better. 

While the gold survived the release process they did not produce the expected higher 

deflection, in fact the results were worse than the PolyMUMPs® fabricated devices. 

Upon further inquiry, it was discovered that AFRL does not possess the capability to 

evaporate metal at elevated temperatures (i.e. the requested 125º C). 

For these reasons, new post-processing procedures were developed for using 

sputtering deposition techniques. This process yielded similar results. Although some 

aluminum bimorph segments survived the release most were etched away. It would 

appear that the protective layer of photoresist used was insufficient. The likely cause for 

the poor results seen in the sputtered gold devices is that the devices are not being 

adequately heated during the sputtering process. As most sputter chambers are calibrated 

for use with 3” – 6” wafers and this research requires metallization of 1 cm x 1cm piece, 
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the heat measurements are likely not accurately representing the temperature of the 

devices during metallization.  

5.6 Summary 

 This chapter presented analysis of the data collected during the modeling and 

evaluation of the “zipper” actuator design. Modeled, fabricated device operations, and 

post-fabrication results were discussed. Observations were explained and suspected 

causes for all observations were provided. Conclusions found during this research, the 

significance of this research, and recommendations for future research are provided in the 

following chapter.  
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6. CONCLUSIONS AND RECOMMENDATIONS  

6.1 Chapter Overview 

This chapter provides a summary of the research conducted on the “zipper” 

actuator design, the significance of the research, and recommendations for future research 

on this topic. 

6.2 Conclusions of Research 

The work presented in this thesis provided the framework for a novel 

electrostatically driven “zipper” actuator capable of achieving extreme initial deflections 

with relatively low actuation voltages. This device is intended to be used for the actuation 

of a micro-mirror platform assembly. Multiple avenues of design characterization were 

conducted which resulted in the validation of this design as a viable approach to the 

implementation of a micro-mirror array capable of agile laser beamsteering. 

The analytical modeling provided a foundation to evaluate the implementation of 

different bimorph material layers. These models determined the effects material and/or 

deposition variations have on the initial deflection and the pull-in voltage requirements of 

partial-bimorph cantilever beams. Additionally, it showed that partial-bimorph 

cantilevers with bimorph segments of 50% to 60% of the total beam length will produce 

the optimal beam deflection, relative to pull-in voltage requirements. 

Finite element modeling validated the initial deflections of partial-bimorph 

cantilever beam and the optimal bimorph segment length calculated during that analytical 

modeling. It determined that locating the bimorph segment at the bottom of the partial-

bimorph cantilever will produce the maximum deflections in the actuator by minimizing 



 

111 

the negative angle observed between beams. FEM showed how stacked partial-bimorph 

cantilever beams add the deflections of the individual beams and produce higher 

deflection in the system. Finally, it was used to optimize the geometry to reduce the space 

requirements of the actuator and proved that” zipper” actuator deflections will not be 

significantly diminished once incorporated into a micro-mirror platform assembly. 

Characterization and testing of fabricated devices verified the results of the 

analytical and finite element modeling. Although there were variations in the measured 

data, the assumption is that these variations are due to minor variations in the fabrication 

process. This proved the vital role fabrication plays in the operation of MEMS devices. 

Additionally, the measured data showed the liner relationship between the number of 

partial-bimorph cantilever beam and the maximum deflection of the “zipper” actuator and 

the voltage required to achieve pull-in of the devices is approximately 20 V, regardless of 

the number of beams in the actuator. Unfortunately, the additional actuators were 

observed to have an adverse affect on the ability to pull the platform downward on the 

actuation side. The additional upward force produced by the un-actuated “zipper” 

actuators coupled with the rigid actuator-to-platform anchor resulted in all the tested 

actuators reaching a pull-in equilibrium state long before expected, which produced a 

dismal 4.4º maximum mechanical tilt of the platform. 

Demonstration of the extreme deflection with lower actuation voltage 

requirements shown in this research illustrates the potential of this novel “zipper” 

actuation design for agile laser beamsteering micro-mirror array applications, currently of 

interest to the U.S. Air Force. 
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6.3 Significance of Research 

4-axis tilt, electrostatically driven MEMS micro-mirror arrays, while of particular 

interest to the U.S. Air Force have possible applications within many other technological 

industries outside the traditional military applications. The design explored in this 

research will guide future work toward the realization of an agile MEMS micro-mirror 

laser beam steering capability. The following are the significant findings of this research 

which will benefit AFRL research toward the development of an electrostatically driven, 

large aperture, micro-mirror actuation assembly for high fill-factor, agile optical phase 

arrays.   

The demonstration of the “zipper” actuator design as a suitable structure for the 

electrostatic actuation of MEMS micro-mirrors. 

The demonstration of high-fill factor arrays micro-mirror platform assemblies 

designed with fill-factors of 95% or better, when implemented with AFRL mirror and 

pillar assembly. 

The demonstration of extreme micro-mirror platform deflections of up to 175 µm 

with level deflection of platform and low actuation voltages of approximately 20 V is 

achievable with this design. 

The development and validation of analytical models to characterize the 

deflections achievable from a partial-bimorph cantilever beam and the pull-in voltage 

requirement associated with that deflection. These models can be used to quickly 

evaluate the effects of bimorph material and/or deposition variations on the operation of 

partial-bimorph cantilever beams. 
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The demonstration of the important role the deposition temperature of the 

bimorph layer plays in the maximum deflection and the pull-in voltage requirements of a 

partial bimorph cantilever beam. 

The discovery of the adverse affects of the un-actuated “zipper” actuators have on 

the tilt of the micro-mirror platform. 

The demonstration of the ability to bond mirror and pillar assembly to an array of 

micro-mirror platform actuation assemblies without damage to the platform actuation 

assemblies or the mirror and pillar assemblies (seen in Figure 74).  

 
Figure 74: SEM image of AFRL designed and fabricated micro-mirror on pillar, flip 
bonded onto a 2 x 2 “zipper” actuator array 
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The demonstration that this “zipper” actuator design is capable of achieving full 

release and lift the mirror and pillar assembly, once it has been flip bonded to a micro-

mirror platform (seen in Figure 75). 

 
Figure 75: SEM image of AFRL designed and fabricated micro-mirror on pillar, flip 
bonded onto a 2 x 2 “zipper” actuator array 

 

6.4 Recommendations for Future Research 

Unfortunately, due to the time and fabrication constraints of this research full 

optimization of this “zipper” actuation design could not be accomplished. While a 

majority of the stated goals for this research were met, further research is needed to 

optimize the mechanical tilt of the micro-mirror platform in order to reach those goals. 
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For this reason, the following recommendations for future work are presented based on 

knowledge gained during this research. 

Analytical modeling of static spring constant in micro-mirror platform assembly, 

as well as the dynamic change in the spring constant of the assembly as the platform is 

actuated. This will need to be modeled for the pull-in of a single actuator and multiple 

actuators, as this will likely change the dynamic response in the assembly. 

Additional device testing to examine the extent of variation between deflections 

of devices, initial and during actuation and what fabrication processes steps may be the 

cause for the observed variations. 

Fabrication of devices with 300 µm bimorph segments for comparison to the 250 

µm bimorph segments studied in this research. 

Further exploration of post-fabrication processing to elevate the issues identified 

in this research. Specifically, explore the deposition technique used in this research to 

identify possible cause and make adjustments which will increase sample temperature. 

Additionally, explore different back etch techniques in an effort to protect aluminum 

bimorph layer during device release. 

Research and development of a better actuator-to-platform anchor, which would 

allow for more flexibility in the joint and ultimately produce more platform tilt. Maybe a 

hinge or pair of hinges which operate like a U-joint type mechanism. 

Examine the possible use of a piezoelectric material for the bimorph segment in a 

partial-bimorph cantilever beam or in addition to a bimorph segment. This could provide 

a piezo-assist to the pull-in of the beam and/or add a position sensing capability to the 

device. 
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6.5 Summary 

This chapter concluded this research by highlighting the conclusions and the 

significance of this research, and providing recommendations for future research topics.  
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APPENDIX A.  Additional Background: Photolithography 

 

In microfabrication, the term photolithography refers to a process which consists 

of five basic steps used to transfer device layer patterns to a photosensitive material 

called photoresist by means of selective exposure to a radiation source such as ultraviolet 

(UV) light [78]. Using a spinner, a wafer is prepared (cleaned) and a layer of photoresist 

is applied. Next, the wafer is softbaked to set the photoresist and ensure all excess liquid 

is removed. At this point the photoresist is masked with the desired pattern and exposed 

to a radiation source, using a system like the one depicted in Figure 76. In this example  

 

Figure 76: Diagram of simple photolithography system 
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the shutter is removed allowing UV light to pass through the open areas of the mask 

pattern layer, which transfers the pattern to the photoresist. Once exposed, the unwanted 

photoresist is developed away leaving the desired pattern in the photoresist. The final step 

is to hard bake the wafer, which further hardens the photoresist and removes any 

remaining liquid [15]. 

Photoresist is a material that undergoes a physical change, on the molecular level, 

when exposed to UV light. There are many types of photoresists but they are parsed into 

two categories, based on how they respond to UV exposure. Positive photoresists are 

polymers with strong molecular bonds; exposure to UV light breaks down the chemical 

bond, weakening it, making the exposed area soluble. So when using a positive 

photoresist, what is visible through the mask pattern layer (Figure 76) is removed during 

the development step. Negative photoresist is the inverse of positive photoresist. It is a 

polymer with weak molecular bond. When exposed to UV light long chains of molecules 

are formed, making the polymer much more robust [78]. This means the area visible 

through the mask pattern layer (Figure 76) remains.  

Once the unwanted photoresist is developed away, leaving the pattern to be 

transferred, the device layer is manufactured. This is accomplished either though an 

additive process (material growth or deposition) or a subtractive process (etching). 
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APPENDIX B. Additional Background: Pattern Transfer 

 

The fabrication of a MEMS device happens layer by layer. For each layer one or 

more photolithography masks are used to define device features. After each 

photolithography step, in order to construct three dimensional structures, the device wafer 

will either undergo the addition or the removal of material [16]. 

To add material, it must be grown or deposited. To grow a layer of material a gas, 

a mixture of gasses, or materials evaporated into a gaseous form are flowed over the 

substrate wafer. In doing this, layers of atoms settle and bond to the wafer, stacking up 

until the desired device layer thickness is reached. Using slightly different processes, this 

can produce amorphous layers, polycrystalline, or monocrystalline layers. A 

monocrystalline epitaxial growth is shown in Figure 77.  

  

Figure 77: Molecular beam epitaxial (MBE) growth of gallium-arsenide (GaAs) on a 
substrate [79] 
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In addition to material growth, physical deposition of material can be used to add 

material to the layer as well. This is accomplished either through the evaporation of the 

target material or a process called sputtering. Evaporative deposition is one of the oldest 

methods for depositing films. Much like the growing process described above, it starts 

with the heating of the target to the point of vaporization [80]. Figure 78(a) is an 

illustration of a generalized evaporation deposition process showing how, rather than 

flowing the material across the substrate as seen in the growth method, the material is 

allowed to naturally settle onto the wafer. Because of the ‘straight’ path of the target 

material’s atoms, this process produces a non-conformal deposition layer. On the other 

hand, the simplified sputtering method, shown in Figure 78(b), is a process by which the 

target material is bombarded by energetic ions, usually argon [80]. When the high-energy  

 

Figure 78: Simplified material deposition methods; (a) Evaporation, (b) Sputtering 

 

ions impact the target, there is a ballistic exchange of momentum, which knocks the 

target atoms free. The kinetic energy generated from that initial exchange results in many 
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other collisions between atoms as they move toward the wafer. This means that those 

target atoms are deposited onto the wafer from every angle, resulting in a conformal 

deposition layer.  

Subtracting material is another way to produce three-dimensional features in a 

device layer. There are many ways this can be accomplished, but they all fall into one of 

two categories. They are either a dry etch method, in which material is removed by 

causing physical damage, a wet etch method which removes material through a chemical 

reaction, or some combination of both [15]. These methods are all referred to as etching. 

Figure 79 is a simplified example of an etching process to illustrate how etching a portion 

of a device layer, regardless of etching method used, will produce three dimensional  

 

Figure 79: Cross-sectional view of a simplified etch process for one device layer: (1) 
cleaned wafer substrate, (2) photoresist layer applied, patterned, exposed, and developed 
(3) source wafer etched, (4) photoresist layer removed to reveal device layer etch profile  

 

features in that layer. The photoresist layer in step (2) is the result of photolithography 

process and is used to protect the area of the wafer which is not to be etched. Step (3) 
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shows how the photoresist, chosen to withstand the particular etchant method to be used, 

protects areas of the wafer while allowing the removal of material from the exposed 

areas. In step (4) the remaining photoresist has been removed. At this point in the 

fabrication and as long as additional device layers are required, this photolithography 

process would repeat.  
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APPENDIX C. Post PolyMUMPs™ Fabrication Process Follower: Evaporation 
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APPENDIX D. Post PolyMUMPs™ Fabrication Process Follower: Sputtering 
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APPENDIX E. Analytical Modeling Data Tables and Graphs: Bimorph Cantilever 
Beam Initial Deflections 

 

Table 10: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 10º C  

 
 

 
Figure 80: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 10º C 
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Table 11: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 50º C 

 
 
 

 
Figure 81: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 50º C 
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Table 12: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 100º C 

 
 

 
Figure 82: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 100º C 
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Table 13: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 150º C 

 
 

 
Figure 83: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 150º C 
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Table 14: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 200º C 

 
 

 
Figure 84: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 200º C 

  

d ₁ d ₂ Δd₁
4.75E-06 3.13E-05 3.60E-05
1.07E-05 4.10E-05 5.17E-05
1.90E-05 4.68E-05 6.58E-05
2.97E-05 4.86E-05 7.83E-05
4.27E-05 4.66E-05 8.93E-05
5.82E-05 4.06E-05 9.88E-05
7.60E-05 3.08E-05 1.07E-04
9.61E-05 1.73E-05 1.13E-04
1.17E-04 1.52E-06 1.18E-04

1.00E-04
Bimorph Non-Bimorph 

4.00E-04

4.50E-04

2.00E-04
1.50E-04
1.00E-04
5.00E-05

2.00E-04

4.00E-04

3.00E-04
3.50E-04

1.50E-04
3.00E-04
2.50E-042.50E-04

4.96E-04 4.00E-06

3.50E-04

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Anchor d₁ Δd

In
iti

al
 D

ef
le

ct
io

n 
(µ

m
)

Bimorph               Non-Bimorph
Segment                      Segment

100 um 

150 um 

200 um 

250 um 

300 um 

350 um 

400 um 

450 um 

496 um 



 

133 

Table 15: Calculated initial deflection results for a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 250º C 

 
 

 
Figure 85: Graph of calculated initial deflection results for a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 250º C 
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APPENDIX F. Analytical Modeling Data Tables and Graphs: Bimorph Cantilever 
Beam Pull-in Voltages 

 

Table 16: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 10º C 

  

  
Figure 86: Calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 10º C 
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Table 17: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 50º C 

  
 

   
Figure 87: Calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 50º C 
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Table 18: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 100º C 

  
 
 

  
Figure 88: Calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 100º C 
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Table 19: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 150º C 

   

 

  
Figure 89: Calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 150º C 
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Table 20: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 200º C 

   

 

  
Figure 90: Calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 200º C 
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Table 21: Calculated voltages required for pull-in of a 500 µm partial-bimorph cantilever 
beam with varied bimorph segments and a temperature change of 250º C 

   

 

  
Figure 91: Calculated voltages required for pull-in of a 500 µm partial-bimorph 
cantilever beam with varied bimorph segments and a temperature change of 250º C 
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APPENDIX G. Experimental Data Tables and Graphs: “Zipper” Actuator 
Assembly Initial Deflections 

 

Table 22: Measured initial deflection results for PolyMUMPs® fabricated, 22-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments  

 

 
 Average 
Deflection

1 23.3 24.5 29.1 27.7 26.15
2 20.3 21.4 21.9 21.7 21.33
3 36.7 37.4 42.9 41.8 39.70
4 36.1 37.5 39.6 38.6 37.95
5 50.5 51.1 56.9 56 53.63
6 52.1 53.3 56.9 55 54.33
7 64.1 65.3 71.6 70.9 67.98
8 67.2 68.2 72.9 70.8 69.78
9 78.5 79.1 86.8 86.2 82.65
10 82.5 83.6 90.2 86.5 85.70
11 93 93.4 102.7 101.2 97.58
12 94.8 97.6 105.5 103.1 100.25
13 106.5 108.1 118.1 117.2 112.48
14 109.6 111.9 121.1 117.4 115.00
15 121.8 123.3 133.9 132.8 127.95
16 124.1 125.5 135.4 132.9 129.48
17 137.4 138.5 150 149.8 143.93
18 138 139.2 150.3 147.1 143.65
19 152.8 154.5 166.1 166.9 160.08
20 151.7 152.6 164.8 161.8 157.73
21 169.2 170 182.9 184.1 176.55
22 165 165.8 176.3 176.2 170.83
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Figure 92: Graph of measured initial deflection results for PolyMUMPs® fabricated,   
22-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments  
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Table 23: Measured initial deflection results for PolyMUMPs® fabricated, 12-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 

 
Figure 93: Graph of measured initial deflection results for PolyMUMPs® fabricated,   
12-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments  
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9 81.3 81 80.7 80.9 80.98
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Table 24: Measured initial deflection results for PolyMUMPs® fabricated, 11-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 

 

 
Figure 94: Graph of measured initial deflection results for PolyMUMPs® fabricated,    
11-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

  

 Average 
Deflection
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2 23.4 22.5 23.3 23 23.05
3 40.3 37.9 39 38.5 38.93
4 42.5 41.6 41.3 40 41.35
5 54.4 51.6 52 51.7 52.43
6 59.2 58.6 59.7 59.2 59.18
7 67.8 64.2 64.6 64.9 65.38
8 77.9 75.9 77.5 77.4 77.18
9 80 78.9 78.5 78.8 79.05
10 96.2 93.8 95.9 95.9 95.45
11 92.1 91.6 91.7 91.3 91.68

Actuator Deflections (µm)
Se

co
nd

ar
y

A
nc

ho
rs

 

y = 7.5041x + 13.989
R² = 0.9768

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8 9 10 11 12

In
iti

al
 D

ef
le

ct
io

n 
(µ

m
)

Secondary Anchor



 

144 

Table 25: Measured initial deflection results for PolyMUMPs® fabricated, 10-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 
 

 
Figure 95: Graph of measured initial deflection results for PolyMUMPs® fabricated,   
10-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

  

 Average 
Deflection

1 25 23.8 23.7 24.1 24.15
2 19.4 20 20.1 20.5 20.00
3 37.4 36.7 36.9 36.7 36.93
4 34.2 34.3 36.1 36.1 35.18
5 51 51.2 51.2 51.3 51.18
6 50 48.3 50.7 50.7 49.93
7 66.3 65.2 66.4 66 65.98
8 62 61.3 64.5 64.3 63.03
9 82.2 81.1 83.1 82.9 82.33

10 76 76.1 76.7 76.6 76.35
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Table 26: Measured initial deflection results for PolyMUMPs® fabricated, 9-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

 

 

 
Figure 96: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
9-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

  

 Average 
Deflection

1 23.3 23.2 24.7 25.1 24.08
2 22.2 21.6 23.7 23.7 22.80
3 35.3 34.5 28.3 37.2 33.83
4 39.2 39.4 42.6 42.3 40.88
5 46.9 46.7 50.6 49.5 48.43
6 56.7 56.7 61.6 61 59.00
7 58.3 58.6 63.2 62 60.53
8 74.3 74.2 80.3 79.6 77.10
9 70.5 70.1 75.3 74.3 72.55
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Table 27: Measured initial deflection results for PolyMUMPs® fabricated, 8-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

  

 

 
Figure 97: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
8-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

  

 Average 
Deflection

1 23.5 24.1 23.9 23.2 23.68
2 20.3 20.3 20.4 20.2 20.30
3 36.6 36.9 36.9 37 36.85
4 35.2 35.3 35.6 35.3 35.35
5 51.5 51.7 51.9 52.2 51.83
6 49 49.1 49.5 49.7 49.33
7 67 67.1 67.5 68.2 67.45
8 61.5 60.6 61.6 61.6 61.33
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Table 28: Measured initial deflection results for PolyMUMPs® fabricated, 7-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

   

 

 
Figure 98: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
7-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

  

 Average 
Deflection

1 22.9 23 22.8 23.5 23.05
2 22.6 22.3 22.8 23.2 22.73
3 33.5 33.7 33.9 33.9 33.75
4 40.6 40.2 40.7 40.5 40.50
5 44.4 44.4 45.1 45.4 44.83
6 58.7 58.2 58.9 58.5 58.58
7 55.8 56 56.2 56.4 56.10

Actuator Deflections (µm)
Se

co
nd

ar
yA

nc
ho

rs

y = 6.4973x + 13.943
R² = 0.9437

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 2 3 4 5 6 7 8

In
iti

al
 D

ef
le

ct
io

n 
(µ

m
)

Secondary Anchor



 

148 

Table 29: Measured initial deflection results for PolyMUMPs® fabricated, 6-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

  

 

 
Figure 99: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
6-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

  

 Average 
Deflection

1 26.5 26.7 23.6 24.2 25.25
2 22.3 22.6 20.7 21.2 21.70
3 42.9 42.8 37.9 38 40.40
4 38.4 38.6 35 35.7 36.93
5 59.5 59.5 53.5 53.2 56.43
6 52.3 52.5 47.1 46.8 49.68
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Table 30: Measured initial deflection results for PolyMUMPs® fabricated, 5-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

  

 

 
Figure 100: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
5-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

  

 Average 
Deflection

1 21.7 21.5 24.8 23.7 22.93
2 23.3 23.5 26 25.8 24.65
3 31.7 31.5 35 34.1 33.08
4 42 43.2 47 46.9 44.78
5 42.2 40.8 45.3 45.3 43.40
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Table 31: Measured initial deflection results for PolyMUMPs® fabricated, 4-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

  

 

 
Figure 101: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
4-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

  

 Average 
Deflection

1 24.1 24.1 24.3 24.4 24.23
2 20.2 20.2 19.4 19.5 19.83
3 38.5 38.8 38.8 38.8 38.73
4 32.6 32.7 32.6 32.5 32.60
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Table 32: Measured initial deflection results for PolyMUMPs® fabricated, 3-beam 
“zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm bimorph 
segments 

  

 

 
Figure 102: Graph of measured initial deflection results for PolyMUMPs® fabricated,     
3-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

 

  

 Average 
Deflection

1 21.3 21.1 21.1 21.3 21.20
2 27.5 26.2 27.2 26.8 26.93
3 28.5 28.5 28.7 28.7 28.60
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Table 33: Measured initial deflection results for PolyMUMPs® fabricated, corrugated  
11-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 250 µm 
bimorph segments 

  

 
Figure 103: Graph of measured initial deflection results for PolyMUMPs® fabricated, 
corrugated 11-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with 
250 µm bimorph segments 

  

 Average 
Corrugated 
Deflection

1 26.7 24.1 24.8 25.9 25.38
2 24.1 22 23.6 23.6 23.33
3 39 37.8 37.2 39.4 38.35
4 42 38.4 41.3 41.7 40.85
5 51.1 46.5 50 52.6 50.05
6 59.2 55.3 57.3 59.9 57.93
7 63.4 58.9 64.2 65.4 62.98
8 74.7 71.8 76.1 75.8 74.60
9 74.7 71.7 77.4 77.9 75.43

10 91.4 86.5 93.3 94.2 91.35
11 87.5 85 89.3 90.1 87.98
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Table 34: Measured initial deflection results for PolyMUMPs® fabricated, corrugated    
9-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with a 250 µm 
bimorph segments 

  

 

 
Figure 104: Graph of measured initial deflection results for PolyMUMPs® fabricated, 
corrugated 9-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with  
250 µm bimorph segments 

  

 Average 
Corrugated 
Deflection

1 24.7 23 24.8 23.5 24.00
2 24.3 23 23.7 23.5 23.63
3 35 33 37.1 34.6 34.93
4 41.9 40.5 41.6 41.9 41.48
5 47 44.6 49.1 46.4 46.78
6 59.1 57.2 59.3 59.7 58.83
7 59.3 56.9 61.4 59.4 59.25
8 75.9 74.2 76.6 76.8 75.88
9 70.3 70 72.2 73.4 71.48
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Table 35: Measured initial deflection results for PolyMUMPs® fabricated, corrugated    
7-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with a 250 µm 
bimorph segments 

  

 

 
Figure 105: Graph of measured initial deflection results for PolyMUMPs® fabricated, 
corrugated 7-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with  
250 µm bimorph segments 

 

  

 Average 
Corrugated 
Deflection

1 24.2 23.4 25.7 24 24.33
2 23.9 23.6 25 24.4 24.23
3 34.8 33.2 37.3 35 35.08
4 42.6 42.4 43.5 44.6 43.28
5 46.5 44.1 48.5 46.7 46.45
6 60.2 59.1 62.2 63.7 61.30
7 56.9 54.8 58.9 58.1 57.18
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Table 36: Measured initial deflection results for PolyMUMPs® fabricated, corrugated    
5-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with a 250 µm 
bimorph segments 

  

 

 
Figure 106: Graph of measured initial deflection results for PolyMUMPs® fabricated, 
corrugated 5-beam “zipper” actuators; 500 µm partial-bimorph cantilever beams with  
250 µm bimorph segments 

 

  

 Average 
Corrugated 
Deflection

1 24 22.5 23.6 22.9 23.25
2 24.8 25.1 24.8 25.7 25.10
3 33.1 31.5 33.8 32.7 32.78
4 45.7 45.1 46.8 45.8 45.85
5 42.5 40.7 42.9 44.3 42.60
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APPENDIX H. Experimental Data Tables and Graphs: “Zipper” Actuator 
Assembly Pull-in Voltages 

 

Table 37: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 22-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 

 

 
Figure 107: Graph of measured 22-beam “zipper” actuator deflection results for pull-in 
test of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 PFa PFo
0 V 29 30 43 40 57 57 72 73 87 90 103 106 118 121 134 135 150 150 166 165 183 176 177 177

10 V 26 21 40 38 54 53 68 70 83 86 99 100 114 116 130 131 148 146 164 160 183 174 174 177
15 V 24 19 37 33 51 51 65 66 79 82 95 98 111 113 128 129 145 143 162 158 180 172 173 176
18 V 24 15 35 30 49 46 62 62 77 78 93 93 109 110 126 124 143 140 160 155 179 170 171 175
19 V 8 8 8 8 8 8 7 5 19 18 36 35 55 55 76 75 77 95 120 116 144 136 139 164
20 V
0 V 28 22 42 39 56 55 71 71 86 87 101 103 117 117 133 133 150 147 167 162 184 176 176 176

10 V 26 19 40 38 53 53 68 68 82 84 97 98 112 114 130 129 146 145 164 153 184 174 174 176
15 V 23 17 39 34 50 51 65 65 79 82 94 97 110 111 127 127 144 142 163 153 180 173 172 175
18 V 22 16 35 28 48 46 63 63 78 78 91 91 111 111 125 124 142 142 160 149 179 172 169 174
20 V 6 6 6 6 6 6 6 7 19 17 35 34 53 53 75 75 76 96 119 115 146 136 137 164
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Figure 108: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 22-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

 

 
Figure 109: Graph of measured 22-beam “zipper” actuator deflection results for pull-in 
test of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 
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Figure 110: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 22-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

Table 38: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 12-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 
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20 V 4 3 4 3 4 3 4 3 4 16 36 34 43 69
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Figure 111: Graph of measured 12-beam “zipper” actuator deflection results for pull-in 
test of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

 
Figure 112: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 12-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Figure 113: Graph of measured 12-beam “zipper” actuator deflection results for pull-in 
test of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 

 

 
Figure 114: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 12-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Table 39: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 10-beam “zipper” actuators 

 
 

 
Figure 115: Graph of measured 10-beam “zipper” actuator deflection results for pull-in 
test of PolyMUMPs® fabricated micro-mirror platform; measured at each secondary 
anchor 

 

1 2 3 4 5 6 7 8 9 10 PFa PFo
0 V 24 21 37 37 51 50 66 65 82 77 76 76

10 V 24 21 37 35 50 50 65 64 82 76 74 76
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19 V 21 16 33 30 47 45 63 60 79 73 38 63
20 V 5 4 5 5 5 4 18 22 47 44 34 60
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Figure 116: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 10-beam micro-mirror platform; measured on actuation side 
(PFa) and side opposite actuation (PFo) 

 

Table 40: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 9-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 
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Figure 117: Graph of measured 9-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

 
Figure 118: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 9-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Figure 119: Graph of measured 9-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 

 
Figure 120: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 9-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Table 41: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 8-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 

 
 

 
Figure 121: Graph of measured 8-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 
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0 V 22 19 35 33 48 46 63 57 57 56
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15 V 19 16 30 29 44 43 59 49 55 57
18 V 18 14 30 27 44 40 59 47 54 57
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0 V 22 19 34 33 47 47 62 57 57 58
10 V 20 19 32 32 46 45 60 56 56 56
15 V 20 17 31 29 45 42 60 50 55 57
18 V 4 4 4 3 16 18 39 34 38 52
20 V 4 3 3 3 14 17 37 35 35 52
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Figure 122: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 8-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 
Figure 123: Graph of measured 8-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 
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Figure 124: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 8-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

 
 

Table 42: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 7-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results, (c) device 3 test results 
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Figure 125: Graph of measured 7-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

 
Figure 126: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 7-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Figure 127: Graph of measured 7-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 

 

 
Figure 128: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 7-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Figure 129: Graph of measured 7-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 3; measured at each 
secondary anchor 

 

 
Figure 130: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 7-beam micro-mirror platform assembly 3; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Table 43: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 6-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 

 
 

 
Figure 131: Graph of measured 6-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

1 2 3 4 5 6 PFa PFo
0 V 21 18 33 30 46 41 41 42

10 V 19 16 32 28 45 40 41 41
15 V 18 12 28 23 42 37 37 40
18 V 6 6 6 5 24 20 22 35
19 V 5 5 5 5 21 19 21 34

0 V 4 20 23 29 42 41 40 43
10 V 4 16 21 27 40 37 38 42
15 V 4 14 18 25 39 35 36 42
18 V 3 13 17 24 37 34 36 41
19 V 4 4 4 4 9 17 20 34

(a)
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Figure 132: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 6-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

 
Figure 133: Graph of measured 6-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 
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Figure 134: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 6-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

 

 

 

 

 

 

Table 44: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 5-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 
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0 V 20 23 29 41 39 39 40
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0 V 20 24 29 43 42 42 41
10 V 19 23 29 41 41 41 42
15 V 19 22 26 40 39 39 42
18 V 18 20 25 39 38 37 41
20 V 3 4 3 3 3 4 7
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Figure 135: Graph of measured 5-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

 
Figure 136: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 5-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Figure 137: Graph of measured 5-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 

 

 
Figure 138: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 5-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Table 45: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 4-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results 

 
 

1 2 3 4 PFa PFo
0 V 22 19 36 31 31 31

10 V 22 17 35 29 30 30
15 V 21 16 34 29 29 28
20 V 20 16 31 26 27 27
25 V 17 14 28 24 24 24
27 V 16 14 26 23 23 23

0 V 22 18 36 31 31 31
10 V 22 18 35 29 30 30
15 V 20 17 33 28 29 29
20 V 19 16 31 26 27 27
25 V 17 15 28 23 24 24
27 V 16 13 26 23 23 23

(a)

(b)
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Figure 139: Graph of measured 4-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

 
Figure 140: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 4-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Figure 141: Graph of measured 4-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 

 

 
Figure 142: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 4-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 
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Table 46: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 3-beam “zipper” actuators; (a) device 1 test results, 
(b) device 2 test results, (c) device 3 test results 

 

 
Figure 143: Graph of measured 3-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured at each 
secondary anchor 

 

1 2 3 PFa PFo
0 V 19 25 26 27 27

10 V 19 25 26 26 26
15 V 18 24 24 25 25
18 V 17 22 23 23 23
25 V 16 21 22 22 22
28 V 15 19 20 21 20

0 V 20 25 27 27 27
10 V 19 24 25 26 26
15 V 19 24 25 25 25
18 V 17 22 23 24 24
25 V 17 22 22 23 23
28 V 16 21 21 22 22

0 V 19 25 26 27 26
10 V 19 24 25 26 26
15 V 18 23 24 25 25
18 V 17 22 23 24 24
25 V 17 21 22 22 22
28 V 15 19 20 20 20

(a)

(b)
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Figure 144: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 3-beam micro-mirror platform assembly 1; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

 

 
Figure 145: Graph of measured 3-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured at each 
secondary anchor 
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Figure 146: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 3-beam micro-mirror platform assembly 2; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 
Figure 147: Graph of measured 3-beam “zipper” actuator deflection results for pull-in test 
of PolyMUMPs® fabricated micro-mirror platform assembly 3; measured at each 
secondary anchor 
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Figure 148: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 3-beam micro-mirror platform assembly 3; measured on 
actuation side (PFa) and side opposite actuation (PFo) 

 

Table 47: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 11-beam (corrugated) “zipper” actuators; (a) device 1 
test results, (b) device 2 test results, (c) device 3 test results 
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1 2 3 4 5 6 7 8 9 10 11 PFa PFo
0 V 23 21 33 35 43 50 53 66 64 83 76 76 77

10 V 13 4 9 21 22 31 34 44 47 58 60 61 73
15 V 6 3 3 19 14 29 25 37 36 46 48 49 64
18 V 4 3 3 18 11 25 20 31 29 36 42 43 59
19 V 3 3 3 18 10 24 19 29 27 33 39 39 57
20 V 3 3 3 17 9 23 17 27 25 30 36 37 55

0 V 21 18 32 33 41 47 52 61 63 76 75 75 75
10 V 11 3 13 3 25 18 34 33 44 48 58 59 69
15 V 6 3 4 19 13 26 24 33 35 39 48 49 62
18 V 4 3 3 17 11 23 20 27 29 31 40 42 57
19 V 3 2 2 16 9 22 18 25 26 28 38 39 56
20 V 3 2 3 16 9 21 17 22 25 26 36 37 54

0 V 15 8 20 19 32 36 43 52 55 68 68 69 69
10 V 14 4 9 18 20 30 33 42 45 54 58 58 64
15 V 7 4 3 20 13 29 24 34 35 39 47 48 58
18 V 5 3 3 19 10 26 20 30 29 34 40 41 54
19 V 4 3 3 19 10 25 18 29 26 30 37 38 51
20 V 10 3 3 11 3 15 10 18 18 21 29 30 45
25 V 3 3 3 10 3 11 3 14 10 15 21 23 39

(a)

(b)

(c)
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Figure 149: Graph of measured 11-beam (corrugated) “zipper” actuator deflection results 
for pull-in test of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured 
at each secondary anchor 

 

 
Figure 150: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 11-beam (corrugated) micro-mirror platform assembly 1; 
measured on actuation side (PFa) and side opposite actuation (PFo) 

 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11

D
ef

le
ct

io
ns

 (µ
m

)

Secondary Anchors

0 V
10 V
15 V
18 V
19 V
20 V

20

30

40

50

60

70

80

PFa PFo

D
ef

le
ct

io
ns

 (µ
m

)

Secondary Anchors

0 V
10 V
15 V
18 V
19 V
20 V



 

184 

 
Figure 151: Graph of measured 11-beam (corrugated) “zipper” actuator deflection results 
for pull-in test of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured 
at each secondary anchor 

 

 
Figure 152: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 11-beam (corrugated) micro-mirror platform assembly 2; 
measured on actuation side (PFa) and side opposite actuation (PFo) 
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Figure 153: Graph of measured 11-beam (corrugated) “zipper” actuator deflection results 
for pull-in test of PolyMUMPs® fabricated micro-mirror platform assembly 3; measured 
at each secondary anchor 

 

 
Figure 154: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 11-beam (corrugated) micro-mirror platform assembly 3; 
measured on actuation side (PFa) and side opposite actuation (PFo) 
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Table 48: Measured deflection results for pull-in of PolyMUMPs® fabricated micro-
mirror platform assembly with four 7-beam (corrugated) “zipper” actuators; (a) device 1 
test results, (b) device 2 test results, (c) device 3 test results 

 

1 2 3 4 5 6 7 PFa PFo
0 V 10 35 27 40 36 53 49 50 51

10 V 3 3 19 20 30 36 41 41 48
15 V 3 3 16 11 23 20 31 32 43
18 V 3 3 4 3 19 3 26 27 38

0 V 20 25 27 43 38 58 51 52 54
10 V 16 5 20 25 29 44 44 45 52
15 V 7 2 3 21 14 30 30 33 45
18 V 3 3 3 21 12 26 27 27 42
19 V 3 2 3 19 12 25 25 26 41
20 V 3 3 2 19 10 22 24 24 39

0 V 4 26 3 36 26 46 45 46 47
10 V 4 22 3 29 17 30 33 33 40
15 V 3 17 4 17 8 13 18 19 31
18 V 4 12 4 14 3 7 11 12 21
19 V 4 12 4 13 3 6 11 11 20

(a)

(b)

(c)
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Figure 155: Graph of measured 7-beam (corrugated) “zipper” actuator deflection results 
for pull-in test of PolyMUMPs® fabricated micro-mirror platform assembly 1; measured 
at each secondary anchor 

 

 
Figure 156: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 7-beam (corrugated) micro-mirror platform assembly 1; 
measured on actuation side (PFa) and side opposite actuation (PFo) 
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Figure 157: Graph of measured 7-beam (corrugated) “zipper” actuator deflection results 
for pull-in test of PolyMUMPs® fabricated micro-mirror platform assembly 2; measured 
at each secondary anchor 

 

 
Figure 158: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 7-beam (corrugated) micro-mirror platform assembly 2; 
measured on actuation side (PFa) and side opposite actuation (PFo) 
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Figure 159: Graph of measured 7-beam (corrugated) “zipper” actuator deflection results 
for pull-in test of PolyMUMPs® fabricated micro-mirror platform assembly 3; measured 
at each secondary anchor 

 

 
Figure 160: Graph of measured micro-mirror platform deflection results for pull-in test of 
PolyMUMPs® fabricated 7-beam (corrugated) micro-mirror platform assembly 1; 
measured on actuation side (PFa) and side opposite actuation (PFo) 
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APPENDIX I. Additional Background: Piezoelectric Material 

Introduction 

Piezoelectricity, stemming from piezein (Greek for ‘press’ or ‘squeeze’) 

combined with electricity, describes the electrical polarization which occurs in a material 

as a direct result of an applied force [81].  Essentially piezoelectric materials are able to 

convert an applied force, which induces a mechanical strain in the material, into an 

electrical signal. Conversely, an applied electrical field will induce a mechanical strain in 

the same material [82]. 

It is said that piezoelectricity was first conjectured by Alexandre Becquerel, 

pictured in Figure 161, in the mid to late 1800’s [83]. Even though Alexandre Becquerel  

 
Figure 161: Alexandre Edmond Becquerel [84] 

 

conceptualized the piezoelectric effect in crystals, history credits Pierre and Jacques 

Curie with the discovery of the effect and its close link to the crystal symmetry of 
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materials [82]. This is mainly due to the fact that the first experimental demonstration of 

the connection between electric fields generated in response to applied stresses 

(piezoelectric phenomena) and the crystallographic structures of particular materials were 

conducted by the Curie Brothers (Figure 162) with published results in 1880 [85]. The 

experiments were conducted on materials such as sodium chlorate, tourmaline, topaz,  

   

 
Figure 162: Brothers and Colleagues, Jacques (left) and Pierre (right) Curie, discoverers 
of the piezoelectric effect [86] 

 

cane sugar, quartz, and Rochelle salt among others; and produced conclusive 

measurements of the electrical charges obtained when a piece of crystal was subjected to 

an external force. This phenomenon is easily described by Equation 1, where 𝑷𝒊 is a  

 𝑷𝒊 = 𝑷𝒊𝟎+𝒋𝒌 ∑𝒅𝒊𝒋𝒌 𝑻𝒋𝒌 (27) 

   

component of the polarization vector, 𝑷𝒊𝟎 is the spontaneous polarization, 𝒅𝒊𝒋𝒌 refers to 

the piezoelectric coefficient, and 𝑻𝒋𝒌 is  the stress tensor component for a specific 
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piezoelectric material [82]. The amazing thing is that they were able to do all of this with 

very basic tools and equipment, by today’s standards. Using nothing more than some tin 

foil, glue, wire, magnets, and a jeweler’s saw to prepare the material for testing [85] and a 

Thomas electrometer (Figure 163) they were able prove that a force applied to specific 

types of materials can generate electricity [82].  

 
Figure 163: Sir William Thomson's Quadrant Electrometer [87] 

 

Interestingly, the Curie brothers did not envision the inverse effect. A year after 

the discovery by the Curie Brothers, mathematician Gabriel Lippmann demonstrated the 

possibility of the application of an electric field inducing a mechanical stress in a 

piezoelectric crystal [86]. This converse effect is expressed by Equation 28 where 𝑺𝒋𝒌 is 

the strain tensor component and 𝑺𝒋𝒌𝟎 is the spontaneous strain of the specific 

piezoelectric material and 𝑬𝒍 refers to the applied external electric field. 

 𝑺𝒋𝒌 = 𝑺𝒋𝒌𝟎+𝒍 ∑ 𝒅𝒊𝒋𝒌 𝑬𝒍  (28) 
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The Curie Brothers immediately, experimentally, verified the existence of the inverse 

effect of their original experiments and continued work in the field to show, through 

quantitative results, that the piezoelectric effects found in these specific crystal structures 

are completely reversible [82]. 

From the initial discovery in the late 1800, developments in the science of 

piezoelectric have advanced vary sporadically; with periods of rapid progression and 

periods of slow or no developments [82]. History shows that each time piezoelectric 

developments seemed to hit a plateau the discovery of a new piezoelectric effect or 

material would occur and lead to new innovations, sparking explosive developments in 

that new area of study. The first major development in the field of piezoelectricity, after 

its initial discovery, occurred in 1917 when Paul Langvin used quartz plates for the 

emission and detection of underwater sound waves. This was mainly in response to the 

use of submarines by enemy forces in World War I. The need arose to find and track 

targets under water, so this device was developed as an ultrasonic submarine detector 

[88]. This marked the first practical application of a piezoelectric device and opened the 

fields of ultrasonic and hydro-acoustics, and gave rise to modern sonar [82].  The next 

great leap occurred in 1934 when Fredrick R. Lack, while working in the radio telephone 

development at Bell Telephone Laboratories, developed the “AT” cut. This reduced the 

weight of radio technology of the day and facilitated the development of aviation radio 

and is still used today in applications across the world. During the 1940’s and 1950’s 

studies focused on the discovery of new piezoelectric materials. The first major 

breakthrough came with Bernard Jaffe’s discovery of the strong piezoelectric properties 

in ceramics; specifically his discovery of the solid solutions of lead zirconate titanate 
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(PZT) which then lead to the discovery of other piezoelectric materials [82, 89]. In the 

1960’s the need for single crystals with higher piezoelectric effects arose, leading to the 

‘polymer boom’ and the discovery of lithium tantalite and lithium niobate [47]. Holding 

true to historical precedence, developments in the science of piezoelectric materials 

continued to ebb and flow from the 1960’s through today. 

Currently, piezoelectric actuators and sensors have applications in nearly every 

technological product today; from televisions, wrist watches, ‘smart’ cell phones, 

automobiles, etc. to more sophisticated civil, mechanical, and aerospace engineering 

structures for control purposes [46, 90]. Future work in the science of piezoelectricity is 

showing a lot of promise in the field of energy harvesting of the human movements. 

There are two main focus areas within this topic. One is though the harnessing of 

biomechanical movement within the body. A piezoelectric device attached to a constantly 

moving organ, such as the heart, lungs, or diaphragm has been shown to produce enough 

electricity to run a pacemaker [91, 92]. Figure 164 is an example of one such device 

which was proven to work by scientist from the University of Illinois and the University 

of Arizona [91]. The other approach is kinetic energy harvesting, meaning movements 

external to the body, such as walking, opening doors, and moving turnstiles in a subway. 

A great example of how this technology occurred when the 2013 Paris Marathon 

harnessed energy from the runners in the marathon to power the electric signs and display 

screens throughout the marathon [93]. When more than 40,000 participants ran across the   
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Figure 164: Thin, flexible mechanical energy harvester, with rectifier and micro-battery, 
mounted on a bovine heart [92] 

 

piezoelectric pads seen in Figure 165, each step a runner took generated approximately 8 

watts of energy which resulted in about 7 kilowatt hours of energy in total. Although 

these concepts have been proven to work, I think it will be a long while before we will 

see energy saving benefits on a global scale mainly due to the lack of an infrastructure to 

make it affordable.  

 

Figure 165: Runners crossing piezoelectric pad during 2013 Paris Marathon [93] 
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At the time of this race, each tile cost over $150 each [93]; not cheap by any 

means but when added to the expansive bank of batteries required to store and 

redistribute the energy it becomes clear this is not a realistic solution at this time.  That 

being said, for small scale applications such as piezoelectric power cells in combat boots 

(to provide a constant power source for small equipment in the field) I think the benefits 

could be immediate; as long as the fabrication cost are reasonable.  Now, armed with an 

understanding of how and why the science of piezoelectricity came to be, we can dig a 

little deeper to examine what material properties within certain materials and allow this 

piezoelectric phenomenon to exist.  

Material Properties 

The piezoelectric effect can be observed in many naturally-occurring crystals, 

recall the materials used in the original experiments. It is also found in man-made 

materials such as PZT and other piezoelectric ceramics [94]. Among these polycrystalline 

materials, many have a perovskite crystal (tetragonal/rhombahedral) structure very close 

to cubic. They exhibit simple cubic symmetry with a general formula of 𝑨𝟐 + 𝑩𝟏 + 𝑶𝟑
𝟐− , 

as seen in Figure 166, were A represents a large divalent metal ion such as lead, B 

represents a tetravalent metal ion such as zirconium, and O represents oxygen. This 

specific formation of the atoms in piezoelectric ceramics occurs as the material 

experiences a phase change brought on by cooling from a high-symmetry, high 

temperature phase to a non-centrosymmetric piezoelectric phase [95]. Centrosymmetric is 

defined as: having symmetry in relation to a center [96]. Conversely, non-
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centrosymmetric refers to crystalline structures with point groups lacking an inversion 

center [97]. It is this phenomenon which gives the material its piezoelectric properties.  

 
Figure 166: Perovskite Crystal Structure of ABO₃[95] 

 

In addition to the simple form structures seen in Figure 166 much more complex 

structures can be formed rather easily by adding a fourth element into the structure [95]. 

This flexibility in material designs becomes very important when fabricating 

piezoelectric devices. Figure 167 (b) and (c) show these complex structures with a B-site 

ordering, when B and B’ occupy the same relative locations in the ABO₃ structure in a 1 

to 1 ratio (Figure 167b) it is said to be 1:1 Ordered, where a 2 to1 ratio (Figure 167c) is a 

2:1 or 1:2 Ordered, and so on for more complex orientations. These orientations of ions 

give each individual material its specific trait and are why some materials are better as 

sensors while others make better actuators. When the B and B’ ions are randomly 

distributed the structure it becomes a simple structure (Figure 167a) [95].  



 

198 

 
Figure 167: Perovskite structures with various B ion arrangements: (a) simple; (b) 1:1 
ordered; (c) ordered [95] 

 

These ion configurations within the material are vital when designing 

piezoelectric actuators and sensors as they dictate how the material will respond to 

specific stimuli. One constant which is used to describe behaviors in piezoelectric 

materials is the piezoelectric coefficient (charge constant) [51]. These coefficients are 

displayed using a tensor representation following the form 𝒅𝒊𝒋𝒌 which is representative of 

a 3-D vector. The d tensor is comprised three layers of symmetrical matrices, as seen in 

Figure 168 [95]. When two tensors within a material are equal they are said to be  

 
Figure 168: The three layers of symmetrical matrices of the d tensor [95] 

crystallographically equivalent and cancel out. This reduces the overall number of 

independent tensor components. The number of remaining independent tensor determines 

the point group a material resides in. A point group is a group of geometric symmetries 
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that keep one or more point fixed, examples can be seen with the Ying/Yang symbols and 

other simple tessellations [98]. Piezoelectric materials belong to the 20 point group, 

meaning the lattice of the material has 20 point symmetry with respect to its center. A 

more common representation of the piezoelectric coefficient is in matrix notation. Since 

𝒅𝒊𝒋𝒌 is symmetric along j and k it can easily be reduced from tensor to matrix notation 

[95]. Figure 169 shows the tensor notation for the j and k elements of the tensor and what 

the resulting matrix notation is. The two most common piezoelectric materials having the  

 
Figure 169: Tensor notation to matrix notation conversions [95] 

 

𝒅𝟑𝟏 and 𝒅𝟑𝟑 elements [50]. Based on a materials crystalline structure, characterized by 

the piezoelectric coefficient of the material, we are able to determine the material 

response. Piezoelectric materials respond to a stimulus (force or electrical field) in one of 

two ways.  The 𝒅𝟑𝟏coefficient, depicted in Figure 170(a), describes the elastic  

 
Figure 170: Samples of piezoelectric ceramic materials; (a) perpendicular response, (b) 
parallel response [51] 

 

polarization generated perpendicular to the direction as the applied stress [50]. Plainly, an 

electric field applied through the thickness of the material creates an elongation in the 
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material or inversely, the material is stretched causing an electrical difference across the 

thickness of the material [8]. The 𝒅𝟑𝟑 coefficient, depicted in Figure 170(b) describes the 

elastic polarization generated in the same (parallel) direction as the applied stress [50]. 

More simply put, an electric field applied though the length of the material causes an 

elongation and vice versa [8].  

 To more closely examine the piezoelectric response in a material, using a 

crystalline structure as described in Figure 170(a) deposited atop a polysilicon beam, we 

will examine the mechanics of composite (bimorph) piezoelectric beams [99]. Figure 171 

depicts just such a beam where subscript 1 refers to material properties and dimensions of 

the piezoelectric material and subscript 2 refers to the same factors in the polysilicon  

 
Figure 171: Simple composite (bimorph) beam actuator with piezoelectric layer atop 
Polysilicon layer; (a) side view of beam without stress effects, (b) side view of beam 
under stress, (c) front view of beam [8] 

 

material. When a piezoelectric material is to be used as an actuator an important element 

to its operation to understand is ρ, the radius of deflection (Equation (29)). For this 

equation some components are dependent on material properties, 𝒓 = 𝒀𝒐𝒖𝒏𝒈′𝒔 𝑴𝒐𝒅𝒖𝒍𝒖𝒔𝟏
𝒀𝒐𝒖𝒏𝒈′𝒔 𝑴𝒐𝒅𝒖𝒍𝒖𝒔𝟐

 



 

201 

and 𝜺 = 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒔𝒕𝒓𝒂𝒊𝒏, while others depend of design geometries, 𝒑 = 𝒕𝟏
𝒕𝟐

  and 

𝒒 = 𝒘𝟏
𝒘𝟐

 [8]. 

 2
2

1

(E ) 1 1[1 ]
3(1 )2

eff total

eff

I pqr p
M p pqr

tρ
ε

 +
= = + + +  

 (29) 

 

Figure 171(b) illustrates the operation of the beam as a function of the radius of 

deflection which is important when designing an actuator. From this one can model how 

a specific composite beam will respond to stimulus and determine the expected 

deflections of the beam. Choosing specific materials and geometries, a designer can 

create an actuator to do exactly what is needed. 

In order to better understand this effect, the radius of deflection affected by 

changes in beam widths and layer thicknesses is modeled. But before this it is necessary 

to step down just a little deeper understand exactly what is happening in the crystal 

structure of a material which allows for the effect to transpire. 

Material Physics 

Piezoelectricity is a term used to describe materials that produce and electrical 

charge due to an applied mechanical stress [50]. This phenomenon happens as a direct 

result of the arrangement of ions in the crystal lattice structure of the material. A linear 

change in internal polarization occurs as a result of an applied stress, which causes an 

electrical field to develop. 

When an ordinary crystal with positive and negative ions is compressed the 

equivalent center of charge remains constant, at the same relative location, and there is no 
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change in polarization due to the applied stress (Figure 172(a)). Whereas, piezoelectric 

materials experience a change in the center of charge of their positive and negative ions  

 
Figure 172: Example 2D crystal structures: (a) square, non-piezoelectric (b) hexagon, 
piezoelectric [50] 

 

due to the applied stress, which induces the change in polarization that spawns an 

effective electrical field (Figure 172(b)). Another illustration of this behavior is shown in 

Figure 173, where the material is polarized parallel to the applied force [94]. Figure 

173(a) shows the piezoelectric material sample under no load, ‘steady-state’ condition. 

 
Figure 173: Piezoelectric effect in a cylindrical body of piezoelectric ceramic; (a) steady-
state, (b) under compressive force, (c) under pulling/stretching force [94]  
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While Figure 173(b) shows the material under a compressive external force (tensile 

strain) which produces a change in the dipole moment and results in a voltage across the 

electrodes. If the same material were to be stretched rather than compressed, as seen in 

Figure 173(c), the voltage across the electrodes will have an opposite polarity. 

Armed with the understanding of the piezoelectric effect and properties found in 

these materials modeling of some of these materials can be conducted in order to identify 

potential uses and impacts to my thesis work. This is done by examining how the radius 

of deflection can be manipulated to achieve high deflections, by changing beam widths 

and material thicknesses.  

Numerical Analysis    

Prior to going through the results it is important to specify how this information is 

to be used and why it is important, as it relates to the thesis work. This section examines 

the use of piezoelectric material for two possible applications in this thesis design. First, 

examines whether or not a piezoelectric material can be used in conjunction with another 

composite/bimorph material to assist with the pull-in of the beam, by taking advantage of 

the electric field generated during actuation. Second and the subject of this analysis, 

would a piezoelectric material used as the composite material be capable of achieving 

large enough deflections.  With an understanding that the radius of deflection will 

characterize the beam deflection, as the radius of deflection is reduced the beam 

deflections is increased (due to the curl), the following model approach was taken. 

To adequately model the radius of deflection in materials the effects in three of 

the more common piezoelectric ceramic materials were observed. The materials chosen 
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were lead zinconate titanate (PZT)[100, 101], aluminum nitride (AlN)[102, 103, 104]and 

Zinc Oxide (ZnO)[100, 105, 106]. Understanding that the material properties of a 

piezoelectric material depends greatly on the sample itself, for the purpose of the 

following models, the values for the material properties were researched and multiple 

sources were used to determine a good estimate of Young’s modulus values for use in 

computations. Issues arose when determining ‘good’ relative stress values for each 

material for use in the computations. It appears that these numbers greatly depend on 

numerous factors and would require analysis of individual sample to determine. Noting 

that changes in relative stress of the material only effects the graphical scale for the 

radius of curvature and how the materials behave with respect to one another, this value 

in the calculations was fixed. The values for the material properties and thickness for the 

polysilicon layer was obtained using MEMSCAP® PolyMUMPs™ design constraints 

and measured results from previous runs.  

To further clarify, the goal with this modeling was to observe how the radius of 

deflection is of PZT, AlN, and ZnO piezoelectric material samples of the same 

dimensions are affected by changes in those dimensions. For all the matlab models the 

thickness of the piezoelectric material was stepped from .25µm to 2µm and the beam 

widths were stepped from 5µm to 40um, the Poly2 beam thickness and width were fixed 

to 1.5 µm and 40 µm respectively. At first glance Figure 174, Figure 175, and Figure 176 

show very similar responses to changes in thickness and width; the important difference 

being the scale of the y-axis, the radius of curvature results. The lead zinconate titanate 

(PZT), Figure 174 shows results range from 0 to .07 µm, while Figure 175 shows zinc  
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Figure 174: Change in Radius of Deflections of lead zinconate titanate (PZT) material as 
Width and Thickness are varied 

 

oxide (ZnO) results ranging from 0 to .012 µm, and Figure 176 shows the range of 0 to 

.25 µm for aluminum nitride (AlN). It is clear from all the results that as the piezoelectric 

layer thickness is increased the radius of curvature is also increase, leading to smaller 

deflections. This makes sense, with respect to the piezoelectric material because thinner 

materials should more easily react to an external electric field (not as rigid as thicker 

layers).  
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Figure 175: Change in Radius of Deflections of zinc oxide (ZnO) material as Width and 
Thickness are varied 

 

 
Figure 176: Change in Radius of Deflections of aluminum nitride (AlN) material as 
Width and Thickness are varied 
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What does not make sense is that the model should also take into account the 

flexibility/rigidity of the polysilicon beam, and that does not appear to be the case. It was 

expected that there would to be a reduction in deflection as the piezoelectric material 

layer thickness was increased but also expected was that a particular thickness would be 

required to produce enough the force required to overcome the rigidity of the polysilicon 

beam. Similarly, thinner beam widths also responded in the same manner. As the width 

of the piezoelectric material increased, the radius of curvature also increased. As for this 

aspect of the design, more piezoelectric surface area (wider beams) was expected to result 

in smaller radius of curvatures. The data plots do show promising results, more analysis 

is required. 
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APPENDIX I. Visual Bibliography  
 

The purpose of this visual bibliography is to provide insight into topics applicable 

to this research and how they are interrelated. The boxes below correlate an actuation 

method with a topic relevant to this research and contain numbers which correspond to 

the reference numbers in the bibliography.  
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